[2] D. Butnariu and Y. Censor:
On the behaviour of a block-iterative projection method for solving convex feasibility problems. Intern. J. Computer Math. 34 (1990), 79–94.
DOI 10.1080/00207169008803865
[3] Y. Censor and S. A. Zenios:
Parallel optimization. Theory, algorithms, and applications, Oxford University Press, Inc., New York, 1997.
MR 1486040
[5] G. Crombez:
Improving the speed of convergence in the method of projections onto convex sets. Publicationes Mathematicae Debrecen 58 (2001), 29–48.
MR 1807574 |
Zbl 0973.65001
[6] F. Deutsch:
The method of alternating orthogonal projections. In: “Approximation theory, spline functions and applications”, Kluwer Academic Publishers, 1992, pp. 105–121.
MR 1165964 |
Zbl 0751.41031
[7] J. Dye and S. Reich:
Random products of nonexpansive mappings. In: “Optimization and Nonlinear Analysis”, Pitman Research Notes in Mathematics Series, Vol. 244, Longman, Harlow, 1992, pp. 106–118.
MR 1184635
[9] L. G. Gubin, B. T. Polyak and E. V. Raik:
The method of projections for finding the common point of convex sets. USSR Comput. Math. and Math. Phys. 7 (1967), 1–24.
DOI 10.1016/0041-5553(67)90113-9
[10] M. Hanke and W. Niethammer:
On the acceleration of Kaczmarz’s method for inconsistent linear systems. Linear Algebra Appl. 130 (1990), 83–98.
MR 1057802
[12] H. Stark and Y. Yang: Vector space projections. J. Wiley & Sons, Inc., New York, 1998.
[14] Y. Yang, N. Galatsanos and A. Katsaggelos:
Projection-based spatially adaptive reconstruction of block-transform compressed images. IEEE Trans. Image Processing 4 (1995), 896–908.
DOI 10.1109/83.392332
[15] D. C. Youla:
Mathematical theory of image restoration by the method of convex projections. In: H. Stark (editor), “Image recovery: theory and applications”, Academic Press, New York, 1987, pp. 29–77.
MR 0896707