Previous |  Up |  Next

Article

Keywords:
regular submodules; modules over discrete valuation domains; Abelian $p$-groups; simultaneous bases
Summary:
A submodule $W$ of a $p$-primary module $M$ of bounded order is known to be regular if $W$ and $M$ have simultaneous bases. In this paper we derive necessary and sufficient conditions for regularity of a submodule.
References:
[1] R.  Baer: Types of elements and the characteristic subgroups of Abelian groups. Proc. London Math. Soc. 39 (1935), 481–514.
[2] J.  Ferrer, F.  Puerta, and X. Puerta: Geometric characterization and classification of marked subspaces. Linear Algebra Appl. 235 (1996), 15–34. DOI 10.1016/0024-3795(94)00107-3 | MR 1374248
[3] L. Fuchs: Infinite Abelian Groups, Vol.  I. Academic Press, New York, 1973. MR 0349869
[4] L. Fuchs: Infinite Abelian Groups, Vol.  II. Academic Press, New York, 1973. MR 0349869 | Zbl 0257.20035
[5] I.  Kaplanski: Infinite Abelian Groups. University of Michigan Press, Ann Arbor, 1954. MR 0065561
[6] N. Ya. Vilenkin: Direct decompositions of topological groups,  I. Mat. Sbornik N. S. 19 (1946), 85–154. (Russian) MR 0017283
Partner of
EuDML logo