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Abstract. A submodule W of a p-primary module M of bounded order is known to
be regular if W and M have simultaneous bases. In this paper we derive necessary and
sufficient conditions for regularity of a submodule.
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1. Introduction

Let R be a discrete valuation domain with maximal ideal Rp, and let M be a
torsion module over R and W be a submodule of M . The submodule W is called

regular [5, p. 65], [6, p. 102] if

(1.1) pnW ∩ pn+rM = pn(W ∩ prM)

holds for all n > 0, r > 0. The regularity condition (1.1) was introduced by
Vilenkin [6] in his study of decompositions of topological p-groups. Kaplanski [5]

showed that for a module M of bounded order (1.1) is necessary and sufficient for
the existence of simultaneous bases of W and M . In this paper we shall identify two

conditions which are equivalent to (1.1). One is related to a theorem of Baer [4, p. 4]
on the decomposition of elements in Abelian p-groups, the other one was introduced

by Ferrer, F. Puerta and X. Puerta [2] to characterize marked invariant subspaces of
a linear operator.

The research of the first author was supported by Deutscher Akademischer Austausch-
dienst under Award No. A/98/25636.
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Notation and definitions: The letters U ,V ,X , . . . will always denote subsets ofM .

Let 〈X 〉 be the submodule spanned by X . We shall use the letters u, v, x, . . . for
elements of the module M , and α, β, µ, . . . will be elements of the ring R. Using the
terminology for Abelian p-groups in [3, p. 4] we say that x ∈ M has exponent k, and

we write e(x) = k, if k is the smallest nonnegative integer such that pkx = 0.
An element x ∈ M is said to have (finite) height s if x ∈ psM and x /∈ ps+1M ,

and x has infinite height, if x ∈ psM for all s > 0. We write h(x) for the height
of x. If x ∈ W then hW (x) will denote the height of x with respect to W . Note that

e(0) = 0 and h(0) = ∞. Let R∗ be the group of units of R. If α ∈ R is nonzero and
α = psγ, γ ∈ R∗, then we set h(α) = s. We put h(α) = ∞ if α = 0. We call x ∈ M

an (s, k; s1)-element if x 6= 0 and

h(x) = s, e(x) = k, h(pk−1x) = (k − 1) + s1.

In accordance with a definition of Baer [1] we say that an element x is regular if
h(x) = ∞ or if h(x) is finite and

(1.2) h(pjx) = j + h(x), j = 1, . . . , e(x) − 1.

The two concepts of regularity introduced above are consistent. We shall see in
Lemma 3.2 that a finite height element x ∈ M is regular if and only if 〈x〉 is a
regular submodule of M .
For s > 0, k > 0 we define the submodules M [pk] = {x ∈ M | pkx = 0} and

(1.3) Ms
k = psM ∩M [pk].

Then

Ms
k = {x ∈ M | e(x) 6 k, h(x) > s}.

In particular M s
0 = 0.

Our main result will be the following.

Theorem 1.1. Let M be a torsion module over a discrete valuation domain and

let W be a submodule of M . The following conditions are equivalent.

(K) W is regular, i.e. if n > 0, r > 0 then

(1.4) pnW ∩ pn+rM = pn(W ∩ prM).

(B) If x ∈ W is nonzero then x can be decomposed as

(1.5) x = ys1
k1

+ . . . + ysm

km
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such that

ysi

ki
∈ W is regular, i = 1, . . . , m,

and

h(ysi

ki
) = si, e(ysi

ki
) = ki,

and

(1.6) k1 > . . . > km > 0 and s1 > . . . > sm.

(FPP) If s > 0, k > 1, then

(1.7) (W ∩M s+1
k ) + (W ∩Ms

k−1) = W ∩ (Ms+1
k + Ms

k−1).

By a result of Baer [4, p. 4, Lemma 65.4] condition (B) is satisfied for W = M .
Hence (B) singles out those submodules W where each element x ∈ W allows a

decomposition (1.5) such that the summands ysi

ki
can be chosen from W itself. With

regard to condition (FPP) we observe that the inclusion

(1.8) (W ∩M s+1
k ) + (W ∩Ms

k−1) ⊆ W ∩ (Ms+1
k + Ms

k−1)

holds for all submodules W .

The proof of the theorem will be split into two parts. In Section 3 we show that
(B) and (K) are equivalent and in Section 4 we prove the equivalence of (B) and

(FPP).

2. Decomposition of elements

We introduce a condition which will be the link between (B) and (K) on the one
hand and between (B) and (FPP) on the other. For a submodule W we define

condition (H) as follows.
(H) If x ∈ W is an (s, k; s1)-element then x can be decomposed as

(2.1) x = ys1
k + z, ys1

k ∈ W, z ∈ W,

such that

(2.2) h(ys1
k ) = s1, e(ys1

k ) = k, and h(z) = s, e(z) < k.

The following technical lemma will be useful in several instances. It implies that

the element ys1
k in (2.1) is regular.
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Lemma 2.1. Let x ∈ M be an (s, k; s1)-element. Assume

(2.3) x = y + z, z ∈ M s
k−1.

Then y 6= 0, e(y) = k, and

(2.4) s 6 h(y) 6 s1.

The element y is regular if and only if h(y) = s1. If x is regular then (2.3) implies

h(y) = s.

���������
. From (2.3) it follows that pk−1y = pk−1x 6= 0, and e(y) = k. Therefore

(2.5) (k − 1) + h(y) 6 h(pk−1y) = h(pk−1x) = (k − 1) + s1,

which yields h(y) 6 s1. It is obvious from (2.5) that we have h(y) = s1 if and only if

h(pk−1y) = (k − 1) + h(y),

i.e., if and only if y is regular. If x is regular then s1 = s and (2.4) yields h(y) = s.

�

Lemma 2.2. For a submodule W the conditions (B) and (H) are equivalent.

���������
. There is nothing to prove if x is regular. Thus, in the following we

assume that x is a non-regular element of W with h(x) = s and e(x) = k. In that

case we have k > 1, s1 > s, and h(pk−1x) = (k − 1) + s1.

(B) ⇒ (H): Let x be given as in (1.5), with m > 2. Put z = ys2
k2

+ . . .+ ysm

km
. Then

(1.6) implies e(z) 6 k2 < k and h(z) = sm = s. Hence the decomposition x = ys1
k1

+z

is of type (H).

(H) ⇒ (B): Let x be an (s, k; s1)-element of W and assume that x is decomposed
according to (H) as

(2.6) x = ys1
k + z

such that (2.2) holds. We know from Lemma 2.1 that ys1
k is regular. Consider x

with s1 > s, k > 1. Assume as an induction hypothesis that condition (H) ensures a
decomposition of type (B) for all w ∈ W with e(w) < k. Thus we have

z = zt2
l2

+ . . . + ztm

lm
, m > 2,
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with properties in accordance with (B). Thus h(pl2−1z) = (l2 − 1) + t2, t2 > s, and

t2 > . . . > tm = s = h(z), and k > e(z) = l2 > . . . > lm > 0. If s1 > t2 then we
already have the desired decomposition. Now suppose t2 > s1. Let j be such that

(2.7) t2 > . . . tj > s1 > tj+1.

Note that tm > s1 can not occur because of tm = s and s1 > s. Set

v = ys1
k + (zt2

l2
+ . . . + z

tj

lj
).

Then k > l2 yields e(v) = k. Since ys1
k is regular we see that p

k−1v = pk−1ys1
k implies

(k − 1) + s1 = h(pk−1v). Hence h(v) 6 s1. On the other hand it follows from (2.7)
that h(v) > s1. Therefore h(v) = s1, and v is regular. If we rewrite (2.6) in the form

x = v + z
tj+1
lj+1

+ . . . + ztm

lm
,

then we have a decomposition with h(v) = s1 and s1 > tj+1 > . . . > tm = s and

e(v) = k > lj+1 > . . . > lm > 0. �

It is not difficult to check that the following observation characterizes the num-
bers m, ki and si in (1.5). For a nonzero element x ∈ M with e(x) = k define

g(x) = h(x) + e(x).

Lemma 2.3. Let x ∈ M be decomposed as

(2.8) x = ys1
k1

+ . . . + ysm

km

such that

h(ysi

ki
) = si, e(ysi

ki
) = ki, and ysi

ki
is regular, i = 1, . . . , m,

and

k1 > . . . > km > 0 and s1 > . . . > sm.

Set K = {k1, . . . , km}. Then j ∈ {1, . . . , k − 1} is in K if and only if g(pjx) >

g(pj−1x). Moreover

h(pkj−1x) = (kj − 1) + sj , j = 1, 2, . . .m.

In particular, we have e(x) = k1 and h(x) = sm.
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3. Equivalence of (K) and (B)

Condition (K) can be reformulated in a more convenient form.

Lemma 3.1. We have

(3.1) pnW ∩ pn+rM = pn(W ∩ prM), n > 0, r > 0,

if and only if for each w ∈ W with h(pnw) = n + r there exists an element w̃ ∈ W

such that

(3.2) pnw = pnw̃ and h(w̃) = r.

���������
. Obviously (3.1) is equivalent to

(3.3) pnW ∩ pn+rM ⊆ pn(W ∩ prM), n > 0, r > 0.

Now (3.3) holds if and only if

x ∈ pnW, x ∈ pn+rM and x /∈ pn+r+1M

imply x ∈ pn(W ∩ prM). That implication means the following. If x = pnw and
w ∈ W and h(x) = n + r, then x = pnw̃ for some w̃ ∈ W with h(w̃) > r. Because of

h(pnw̃) = n + r the inequality h(w̃) > r is equivalent to h(w̃) = r. �

Lemma 3.2. Let x be an element of finite height with e(x) = k. Then x is regular

if and only if the submodule 〈x〉 is regular , i.e.

(3.4) pr〈x〉 ∩ pn+rM = pr(〈x〉 ∩ pnM), n > 0, r > 0.

���������
. Assume (3.4). We want to show that h(pk−1x) = (k − 1) + s1 implies

s1 = h(x). According to Lemma 3.1 there exists an element x̃ ∈ 〈x〉 with properties
corresponding to (3.2), i.e. x̃ = γptx, γ ∈ R∗, and pk−1x = pk−1(γptx) and h(ptx) =
s1. Then we have t = 0, and h(x) = s1. It is easy to check that (3.4) holds if x is
regular. �
���������

of Theorem 1.1. Part I: (B) ⇔ (K). (B) ⇒ (K): We want to show that
condition (B) implies (K) in the equivalent form of Lemma 3.1. Let w ∈ W be such
that h(pnw) = n + r, and h(w) = s, e(w) = k1. Then s 6 r and k1 > n. Hence

(B) yields a decomposition
w = ys1

k1
+ . . . + ysm

km
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where the elements ysi

i ∈ W are regular, h(ysi

i ) = si, and

s1 > . . . > sm = s = h(w)

and e(w) = k1 > . . . > km > 0. Let t be such that kt > n > kt+1. Then

n + r = h(pnw) = h(pnys1
k1

+ . . . + pnyst

kt
),

and h(pnw) = h(pnyst

kt
) = n + st. Hence st = r. Set w̃ = ys1

k1
+ . . . + yst

kt
. Then

w̃ ∈ W and h(w̃) = r and pnw = pnw̃.
(K) ⇒ (B): Because of Lemma 2.2 it suffices to show that (K) implies (H). Let

x ∈ W be an (s, k; s1)-element. Set w = pk−1x. Then (K), resp. Lemma 3.1, imply
that there exists an x̃ ∈ W such that

(3.5) pk−1x = pk−1x̃

and h(x̃) = s1. From (3.5) it follows that e(x̃) = k and h(pk−1x̃) = (k − 1) + s1.
Now set z = x− x̃. Then (3.5) yields e(z) < k. Hence x = x̃ + z is a decomposition

of type (H). �

As (K) holds for W = M we can write each nonzero element x of M according

to (H) in the form (2.1). Similarly we can decompose x according to (B) as a sum
of the form (1.5). In that case we recover the result of Baer [4, p. 4, Lemma 65.4]

mentioned in Section 1.

4. Equivalence of (B) and (FPP)

In [2] J. Ferrer, and F. and X. Puerta studied marked invariant subspaces of

an endomorphism A of � n . Their investigation is based on subspaces of the form
Im(λI −A)s ∩Ker(λI −A)k. Thus the submodules M s

k in (1.3) are a generalization

of those subspaces. The next lemma is adapted from [2]. It characterizes regular
elements in terms of M s

k . Note that M s
k ⊆ Ms1

k1
if s1 6 s and k 6 k1. Hence

Ms+1
k + Ms

k−1 ⊆ Ms
k .

Lemma 4.1. An element x ∈ M satisfies

(4.1) x ∈ M s
k and x /∈ Mks + 1 + M s

k−1

if and only of

(4.2) x is regular and h(x) = s and e(x) = k.
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���������
. “⇒”: Assume that x satisfies (4.1). Recall that x ∈ M s

k if and only if

both h(s) > s and e(x) 6 k. Hence

(4.3) x /∈ M s+1
k + Ms

k−1

implies h(x) = s and e(x) = k. Assume h(pk−1x) = (k − 1) + s1. If we decompose x

according to (H) then x = ys1
k + z ∈ Ms1

k + Ms
k−1. Hence (4.3) implies s1 = s, and

x is regular.
“⇐”: Consider an element x with properties (4.2). Then x ∈ M s

k , x /∈ Ms+1
k and

x /∈ Ms
k−1. If

x = y + z, y 6= 0, z ∈ M s
k−1,

and x is regular then it follows from Lemma 2.1 that h(y) = s. Hence we have

y /∈ Ms+1
k and x /∈ Ms+1

k + Ms
k−1. �

���������
of Theorem 1.1, Part II: (H) ⇔ (FPP). (H) ⇒ (FPP): Because of the

inclusion (1.8) the identity (1.7) in (FPP) is equivalent to

(4.4) W ∩ (M s+1
k + Ms

k−1) ⊆ (W ∩Ms+1
k ) + (W ∩Ms

k−1).

We want to show that condition (H) implies (4.4) for all s > 0, k 6 1. Take an
element

(4.5) x ∈ W ∩ (M s+1
k + Ms

k−1).

Then x ∈ Ms
k and therefore h(x) > s and e(x) 6 k. To prove that

(4.6) x ∈ (W ∩M s+1
k ) + (W ∩Ms

k−1)

we consider three cases. First, let h(x) > s + 1 then x ∈ W ∩ M s+1
k and (4.6) is

obvious. Secondly, let e(x) 6 k − 1. In that case x ∈ W ∩ M s
k−1. Now assume

h(x) = s and e(x) = k. By Lemma 4.1 it follows from (4.5) that x is not regular.

Hence h(pk−1x) = (k − 1) + s1 and s1 > s. According to (H) we have x = ys1
k + z

with ys1
k ∈ W ∩Ms1

k and z ∈ W ∩M s
k−1, which yields (4.6).

(FPP) ⇒ (H): Let x be an (s, k; s1)-element. If s1 = s then x is regular and we
have (2.1) with z = 0. Suppose now that x is not regular , i.e. s1 > s + 1. Then
Lemma 4.1 implies x ∈ W ∩ (M s+1

k + Ms
k−1). From (FPP) we obtain

(4.7) x = y + z, y ∈ W ∩M s+1
k , z ∈ W ∩Ms

k−1.

Then y 6= 0, e(y) = k and h(y) > s + 1. Let y in (4.7) be such that h(y) is maximal.
We shall show that such a choice of y implies h(y) = s1, and in that case (4.7) is a
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decomposition of type (H). Now suppose that h(y) = s̃ < s1. Then, by Lemma 2.1,

the element y ∈ W is not regular. Applying Lemma 4.1 to y ∈ W ∩M s̃
k we obtain

y ∈ W ∩ (M s̃+1
k + M s̃

k−1). Thus (FPP) yields

y = ỹ + z2, ỹ ∈ W ∩M s̃+1
k , ỹ 6= 0, z2 ∈ W ∩M s̃

k−1.

Hence x = ỹ + (z + z2), and we have another decomposition of the form (4.7), but
now with h(ỹ) > s̃, which contradics the maximality of s̃. �
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