Previous |  Up |  Next

Article

Keywords:
$R_0$-algebra; DRL-semigroup; WDRL-semigroup
Summary:
We introduce the notion of weak dually residuated lattice ordered semigroups (WDRL-semigroups) and investigate the relation between $R_0$-algebras and WDRL-semigroups. We prove that the category of $R_0$-algebras is equivalent to the category of some bounded WDRL-semigroups. Moreover, the connection between WDRL-semigroups and DRL-semigroups is studied.
References:
[1] C. C. Chang: Algebraic analysis of many valued logics. Trans. Amer. Math. Soc. 88 (1958), 467–490. DOI 10.1090/S0002-9947-1958-0094302-9 | MR 0094302 | Zbl 0084.00704
[2] P. Hájek: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht, 1998. MR 1900263
[3] T. Kovář: A general theory of dually residuated lattice ordered monoids. Thesis, Palacký Univ. Olomouc, 1996.
[4] T. Kovář: Two remarks on dually residuated lattice ordered semigroups. Math. Slovaca 49 (1999), 17–18. MR 1804468
[5] J. Rachůnek: DRL-semigroups and $MV$-algebras. Czechoslovak Math. J. 123 (1998), 365–372. MR 1624268
[6] J. Rachůnek: $MV$-algebras are categorically equivalent to a class of $DRL_{1(i)}$-semigroups. Math. Bohem. 123 (1998), 437–441. MR 1667115
[7] L. Z. Liu and K. T. Li: Pseudo MTL-algebras and pseudo $R_0$-algebras. Sci. Math. Jpn. 61 (2005), 423–427. MR 2140101
[8] D. W. Pei and G. J. Wang: The completeness and application of formal systems. Science in China (series E) 1 (2002), 56–64. MR 1909527
[9] K. L. N. Swamy: Dually residuated lattice ordered semigroups. Math. Ann. 159 (1965), 105–114. DOI 10.1007/BF01360284 | MR 0183797 | Zbl 0138.02104
[10] G. J. Wang: Non-classical Mathematical Logic and Approximate Reasoning. Science Press, BeiJing, 2000.
Partner of
EuDML logo