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Abstract. We introduce the notion of weak dually residuated lattice ordered semi-
groups (WDRL-semigroups) and investigate the relation between R0-algebras and WDRL-
semigroups. We prove that the category of R0-algebras is equivalent to the category of
some bounded WDRL-semigroups. Moreover, the connection between WDRL-semigroups
and DRL-semigroups is studied.
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1. Introduction

The notion of dually residuated lattice ordered semigroups (in short DRL-
semigroups) was introduced by K. L.N. Swamy in [9] as a common generalization of

Brouwerian algebras and commutative lattice ordered groups. In [3]–[4], T.Kovář
have made an intensive study of the DRL-semigroups. In 1998, J.Rach̊unek inves-

tigated the relation between MV -algebras [1] and DRL-semigroups and proved that
MV -algebras are categorically equivalent to DRL1(i)-semigroups [5]–[6].

R0-algebras were introduced by Wang [8] as an algebraic counterpart of Formal
System $∗ [10]. It is worth noting that R0-algebras are different from MV -algebras

because the identity (x → y) → y = (y → x) → x holds in MV -algebras [2], but
it does not hold in R0-algebras. In fact, R0-algebra is an algebra induced by a left

continuous t-norm and its corresponding residuum, but MV -algebra is an algebra
induced by a continuous t-norm and its corresponding residuum. From this point of

view, it is meaningful to study R0-algebras.

Subsidized by the Special Funds for Major State Basic Research Projects G1999032801
and NSFC 50136030.
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In this paper, we introduce the notion of WDRL-semigroups and investigate the

relation between R0-algebras and WDRL-semigroups. We prove that R0-algebras
are categorically equivalent to some WDRL-semigroups. Moreover, we discuss the
connection between WDRL-semigroups and DRL-semigroups and prove that each

DRL-semigroup is a WDRL-semigroup, but the converse may not be true. The
condition under which a WDRL-semigroup is a DRL-semigroup is established.

Let us introduce the notions of R0-algebras and WDRL-semigroups.

Definition 1.1 ([10]). An R0-algebra is an algebra L = (L,∧,∨, 0, 1,¬,→) of
type (2, 2, 0, 0, 1, 2) such that
(i) (L,∧,∨, 0, 1) is a bounded distributive lattice,
(ii) ¬ is an order-reversing involution operation on L,

(iii) → is a binary operation on L which satisfies the following:

(R1) x → y = ¬y → ¬x,

(R2) 1 → x = x,

(R3) (y → z) ∨ ((x → y) → (x → z)) = (x → y) → (x → z),
(R4) x → (y → z) = y → (x → z),
(R5) x → (y ∨ z) = (x → y) ∨ (x → z),
(R6) (x → y) ∨ ((x → y) → (¬x ∨ y)) = 1.

Example 1.2. Let L = [0, 1]. For any x, y ∈ L, we define

x ∧ y = min{x, y}, x ∨ y = max{x, y}, ¬x = 1− x, x → y =

{
1, x 6 y,

¬x ∨ y, x > y.

Then (L,∧,∨,¬,→, 0, 1) is an R0 algebra. But it is not an MV -algebra because

(0.4 → 0.6) → 0.6 = 0.6 6= (0.6 → 0.4) → 0.4 = 1.

Remark 1.3. In [7], the authors have proved that the requirement of distribu-
tivity in Definition 1.1 is redundant. That is, if L is a bounded lattice with order-
reversing involution ¬ and satisfies (R1)–(R5), then L is a bounded distributive

lattice.

Definition 1.4. A WDRL-semigroup is an algebra L = (L, +, 0,∨,∧,−) of type
(2, 0, 2, 2, 2) such that

(DRL1) (L, +, 0) is a commutative monoid,
(DRL2) (L,∨,∧) is a lattice,
(DRL3) x + (y ∨ z) = (x + y) ∨ (x + z), x + (y ∧ z) = (x + y) ∧ (x + z) for any

x, y, z ∈ L,

(DRL4) if 6 denotes the order on L induced by the lattice (L,∨,∧), then for each
x, y ∈ L, the element x− y is the smallest z ∈ L such that y + z > x,
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(DRL5) L satisfies the identity

(((x − y) ∨ 0) + y) ∧ (((y − x) ∨ 0) + x) 6 x ∨ y,

(DRL6) x− x > 0 for each x ∈ L.

Remark 1.5. If the condition (DRL5) of Definition 1.4 is replaced by (DRL5′),
then L = (L, +, 0,∨,∧,−) is called a DRL-semigroup defined by K. L.N. Swamy in
[9], where

(DRL5′) L satisfies the identity ((x− y) ∨ 0) + y 6 x ∨ y.

Obviously, each DRL-semigroup is a WDRL-semigroup, but the converse may not

be true. This is showed by the following example.

Example 1.6. Suppose 0 < a < b < c < 1 and let L = {0, a, b, c, 1}. For all
x, y ∈ L, we define x ∧ y = min{x, y}, x ∨ y = max{x, y}. Define + and − on L as
follows:

+ 0 a b c 1
0 0 a b c 1
a a a b 1 1
b b b 1 1 1
c c 1 1 1 1
1 1 1 1 1 1

− 0 a b c 1
0 0 0 0 0 0
a a 0 0 0 0
b b b 0 0 0
c c c b 0 0
1 1 c b a 0

Then (L,∧,∨, +,−, 0) is a WDRL-semigroup. But it is not a DRL-semigroup because
((c − a) ∨ 0) + a = c + a = 1 66 c ∨ a = c. This shows that WDRL-semigroup is a

generalization of DRL-semigroup.

The following proposition shows the relation between WDRL-semigroups and

DRL-semigroups.

Proposition 1.7. A WDRL-semigroup L is a DRL-semigroup if and only if
((x− y) ∨ 0) + y = ((y − x) ∨ 0) + x for all x, y ∈ L.

���������
. Suppose that L is a WDRL-semigroup and satisfies ((x− y) ∨ 0) + y =

((y − x) ∨ 0) + x for all x, y ∈ L. Then (((x − y) ∨ 0) + y) ∧ (((y − x) ∨ 0) + x) =
((x− y)∨ 0) + y. From (DRL5) it follows that ((x− y)∨ 0) + y 6 x∨ y, i.e. (DRL5′)

holds. This together with (DRL1–DRL4, DRL6) implies that L is a DRL-semigroup.
The converse is obvious. �

The following example shows that the condition (DRL5) is independent of all the
remaining conditions.
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Example 1.8. Let L = {0, a, b, c, d, 1}. For any x, y ∈ L, we define ∨,∧, +
and—as follows:

∨ 0 a b c d 1
0 0 a b c d 1
a a a b c d 1
b b b b b b 1
c c c b c b 1
d d d b b d 1
1 1 1 1 1 1 1

∧ 0 a b c d 1
0 0 0 0 0 0 0
a 0 a a a a a
b 0 a b c d b
c 0 a c c a c
d 0 a d a d d
1 0 a b c d 1

+ 0 a b c d 1
0 0 a b c d 1
a a 1 1 1 1 1
b b 1 1 1 1 1
c c 1 1 1 1 1
d d 1 1 1 1 1
1 1 1 1 1 1 1

− 0 a b c d 1
0 0 0 0 0 0 0
a a 0 0 0 0 0
b b a 0 a a 0
c c a 0 0 a 0
d d a 0 a 0 0
1 1 a a a a 0

Obviously, (L,∧,∨, +,−, 0) satisfies conditions (DRL1)–(DRL4) and (DRL6). But it
does not satisfy (DRL5) because ((c−d)∨0+d)∧((d−c)∨0+c) = (a+d)∧(a+c) =
1 ∧ 1 = 1 66 c ∨ d = b.

2. Some properties of R0-algebras and WDRL-semigroups

In this section, we study the properties of R0-algebras and WDRL-semigroups.

Lemma 2.1 ([8]). The following properties hold in R0-algebras:

(1) ¬x = x → 0,
(2) x 6 y if and only if x → y = 1,
(3) ¬x 6 x → y,

(4) x 6 (x → y) → y,

(5) ¬(x ∨ y) = ¬x ∧ ¬y,¬(x ∧ y) = ¬x ∨ ¬y,

(6) if x 6 y, then z → x 6 z → y, y → z 6 x → z,

(7) (x → y) ∨ (y → x) = 1,
(8) (x ∨ y) → z = (x → z) ∧ (y → z),
(9) (x ∧ y) → z = (x → z) ∨ (y → z),

(10) x → (y ∧ z) = (x → y) ∧ (x → z).
Let L be an R0-algebra. For any x, y ∈ L, we define

x + y = ¬x → y.

342



Proposition 2.2. If L is an R0-algebra, then (L, +, 0) is a commutative monoid.
���������

. It suffices to show that + is commutative, associative and x+0 = x for
any x ∈ L.

Indeed, x + y = ¬x → y = ¬y → ¬(¬x) = ¬y → x = y + x by (R1), that is, + is
commutative.

It follows from (R4) and the commutativity of + that x + (y + z) = x + (z + y) =
¬x → (¬z → y) = ¬z → (¬x → y) = z + (x + y) = (x + y) + z. This shows that +
is associative.

x + 0 = ¬x → 0 = ¬(¬x) = x follows from Lemma 2.1(1) and involution of ¬.
Therefore (L, +, 0) is a commutative monoid. �

Proposition 2.3. Let L be an R0-algebra. The following properties hold:

(1) x + 1 = 1,
(2) x + ¬x = 1,
(3) x ∨ y 6 x + y,

(4) x 6 y if and only if ¬x + y = 1,
(5) if x 6 y, then x + z 6 y + z,

(6) x + (y ∨ z) = (x + y) ∨ (x + z),
(7) x + (y ∧ z) = (x + y) ∧ (x + z).
���������

. (1) x + 1 = ¬x → 1 = 1 follows from Lemma 2.1(2).
(2) By Lemma 2.1(2) we have x + ¬x = ¬x → ¬x = 1.
(3) Since ¬x 6 x → y, it follows that ¬x → (x → y) = 1. This together with

(R4) implies that x → (x + y) = x → (¬x → y) = ¬x → (x → y) = 1. Using
Lemma 2.1(2) we get x 6 x + y. Similarly, y 6 x + y. Hence x ∨ y 6 x + y.
(4) x 6 y if and only if x → y = 1 if and only if ¬(¬x) → y = 1 if and only if

¬x + y = 1 by the involution of ¬ and Lemma 2.1(2).
(5) If x 6 y, then ¬z → x 6 ¬z → y by Lemma 2.1(6), i.e., z + x 6 z + y.

(6) By (R5) we obtain that x + (y ∨ z) = ¬x → (y ∨ z) = (¬x → y)∨ (¬x → z) =
(x + y) ∨ (x + z).
(7) x + (y ∧ z) = ¬x → (y ∧ z) = (¬x → y)∧ (¬x → z) = (x + y)∧ (x + z) follows

from Lemma 2.1(10). �

Proposition 2.4. If L is an R0-algebra, then for any x, y ∈ L, there exists the

smallest element z ∈ L such that y + z > x. We denote z by x− y, that is,

(i) y + (x− y) > x,

(ii) if y + z > x, then x− y 6 z.
���������

. Let
P (x, y) = {z ∈ L : y + z > x, x, y ∈ L}.
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Since x+y > x by Proposition 2.3(3), then x ∈ P (x, y), which implies that P (x, y) 6=
∅. Next we prove x− y = ¬(x → y). Since y + ¬(x → y) = ¬y → ¬(x → y) = (x →
y) → y, it follows from Lemma 2.1(4) that (x → y) → y > x, i.e., y +¬(x → y) > x.
This shows that ¬(x → y) ∈ P (x, y).
Let z ∈ P (x, y), i.e., y + z > x, then x → (y + z) = 1 by Lemma 2.1(2), and so

x → (z + y) = 1 by Proposition 2.2. On the other hand, from (R1) and (R4), we
have ¬(x → y) → z = ¬z → ¬(¬(x → y)) = ¬z → (x → y) = x → (¬z → y) = x →
(z + y). This leads to ¬(x → y) → z = 1. By Lemma 2.1(2) we have ¬(x → y) 6 z.
Hence x− y = ¬(x → y). �

Remark 2.5. Proposition 2.4 shows that x− y = ¬(x → y) in R0-algebras.

Proposition 2.6. Let L be an R0-algebra. The following properties hold:

(1) x− y 6 z if and only if x 6 y + z,

(2) x− y 6 x, x− y 6 ¬y,

(3) x− x = 0, x− 0 = x,

(4) (x + y)− y 6 x,

(5) if x 6 y, then x− z 6 y − z, z − y 6 z − x,

(6) x− (y ∧ z) = (x− y) ∨ (x − z),
(7) (x− y) ∧ (y − x) = 0.
���������

. (1) If x − y 6 z, then (x − y) + y 6 y + z by Proposition 2.3(5). In
view of Proposition 2.4 we have (x − y) + y > x, and so x 6 y + z. Conversely, if

x 6 y + z, from Proposition 2.4 it follows that x− y 6 z.
(2) Since x+ y > x, we have x− y 6 x by (1). Similarly, from y +¬y = 1 > x and

(1) we get x− y 6 ¬y.

(3) From x = x + 0 and (1) it follows that x − x 6 0, thus x − x = 0. Next we
prove x − 0 = x. Obviously, by (2) we obtain x − 0 6 x. On the other hand, from

Proposition 2.4 we have x 6 (x − 0) + 0 = x− 0. Consequently, x− 0 = x.

(4) Since x + y 6 x + y, we deduce (x + y)− y 6 x from (1).

(5) From Proposition 2.4 it follows that y 6 (y−z)+z. If x 6 y, then x 6 (y−z)+z,
thus x − z 6 y − z by (1). On the other hand, z 6 (z − x) + x follows from

Proposition 2.4. If x 6 y, then (z − x) + x 6 (z − x) + y, and so z 6 (z − x) + y.
Hence z − y 6 z − x by (1).

(6) x − (y ∧ z) 6 t if and only if x 6 t + (y ∧ z) = (t + y) ∧ (t + z) if and only if
x 6 t+y, x 6 t+z if and only if x−y 6 t, x−z 6 t if and only if (x−y)∨ (x−z) 6 t

by repeatedly using (1) and Lemma 2.3(7). Hence x− (y ∧ z) = (x − y) ∨ (x− z).
(7) From Lemma 2.1(7), we have (x → y) ∨ (y → x) = 1, then ¬(x → y) ∧ ¬(y →

x) = 0. By Proposition 2.4 we obtain x−y = ¬(x → y), thus (x−y)∧(y−x) = 0. �
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Proposition 2.7. Let L be an R0-algebra. Then for any x, y ∈ L,

((x− y) + y) ∧ ((y − x) + x) = x ∨ y.

���������
. From Propositions 2.3(3) and 2.4 we have (x−y)+y > y and (x−y)+y >

x, respectively. Hence (x− y) + y > x∨ y. Similarly, (y− x) + x > x ∨ y. This leads
to ((x − y) + y) ∧ ((y − x) + x) > x ∨ y. Conversely, ((x − y) + y) ∧ ((y − x) + x) =
(((x−y)+y)∧ ((y−x)+x))−0 = (((x−y)+y)∧ ((y−x)+x))− ((x−y)∧ (y−x)) =
((((x− y)+ y)∧ ((y−x)+x))− (x− y))∨ ((((x− y)+ y)∧ ((y−x)+x))− (y−x)) 6
(((x − y) + y) − (x − y)) ∨ (((y − x) + x) − (y − x)) 6 y ∨ x = x ∨ y by using
Proposition 2.6(3, 7, 6, 5, 4). Therefore ((x − y) + y) ∧ ((y − x) + x) = x ∨ y. �

Lemma 2.8. The following properties hold in WDRL-semigroups:
(1) if x 6 y, then x + z 6 y + z,

(2) if x 6 y, then x− z 6 y − z, z − y 6 z − x,

(3) x− y 6 z if and only if x 6 y + z,

(4) (x− y)− z = (x− z)− y,

(5) x− (y + z) = (x− y)− z,

(6) (x− y) + y > x,

(7) (x + y)− y 6 x,

(8) (((x− y) ∨ 0) + y) ∧ (((y − x) ∨ 0) + x) = x ∨ y,

(9) x− x = 0.
���������

. The proof is similar to that in [9]. �

3. Main results

In this section, the relation between R0-algebras and WDRL-semigroups is dis-
cussed, and it will be proved that the category of R0-algebras is equivalent to the

category of some WDRL-semigroups.

Theorem 3.1. Let (L,∨,∧,¬,→, 0, 1) be an R0-algebra. Define

x + y = ¬x → y, x− y = ¬(x → y),

then (L,∨,∧, +,−, 0) is a bounded WDRL-semigroup, and satisfies

(DRL7) 1− (1− x) = x,
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and

(DRL8) (x − y) ∧ ((x ∧ ¬y)− (x− y)) = 0.

���������
. From Propositions 2.2, 2.3(6, 7), 2.4, 2.7 and Definition 1.1, we see that

(L,∨,∧, +,−, 0) is a bounded WDRL-semigroup with the greatest element 1. Now
we prove that (DRL7) and (DRL8) hold. Indeed, 1− (1− x) = ¬(1 → ¬(1 → x)) =
¬¬x = x. Thus (DRL7) holds. By (R6) we have (x → y)∨((x → y) → (¬x∨y)) = 1.
Thus ¬(x → y) ∧ ¬((x → y) → (¬x ∨ y)) = 0. Since x − y = ¬(x → y), then
x − y = ¬(x → y) = ¬(¬y → ¬x) = ¬y − ¬x. Hence ¬((x → y) → (¬x ∨ y)) =
(x → y) − (¬x ∨ y) = ¬(¬x ∨ y) − ¬(x → y) = (x ∧ ¬y) − (x − y). Therefore
(x− y)∧ ((x ∧ ¬y)− (x− y)) = ¬(x → y)∧ ¬((x → y) → (¬x ∨ y)) = 0. This shows
that (DRL8) holds. �

Theorem 3.2. Let (L, +, 0,∨,∧,−) be a WDRL-semigroup with the greatest
element 1 and satisfy the identities (DRL7) and (DRL8). Define

¬x = 1− x, x → y = ¬x + y,

then (L,∨,∧,¬,→, 0, 1) is an R0-algebra.
���������

. (i) Firstly, we prove that ¬ is an order-reversing involution mapping.
If x 6 y, from Lemma 2.8 (2) we have 1 − y 6 1 − x, i.e., ¬y 6 ¬x. This shows

that ¬ is an order-reversing mapping. Since ¬¬x = 1− ¬x = 1− (1− x), it follows
from (DRL7) that ¬¬x = x. Hence ¬ is an order-reversing involution mapping.
(ii) Now we prove that if a WDRL-semigroup L has the greatest element 1 and

satisfies (DRL7), then L is a bounded lattice and 0 is the smallest element of L.
Indeed, by (DRL4) we have (1− x) + x > 1. Since 1 is the largest element of L,

it follows that (1 − x) + x = 1, which implies that 1 − 0 = (1 − 0) + 0 = 1. By
(DRL7) we have 1− (1− 0) = 0, and so 1− 1 = 0. On the other hand, since 1 is the
largest element of L, we have 1− x 6 1, and so 1− 1 6 1− (1− x). By (DRL7) we
obtain 0 6 x. This shows that 0 is the smallest element of L. Hence (L,∧,∨, 0, 1) is
a bounded lattice.
From (i) and (ii), we have (L,∧,∨,¬, 0, 1) is a bounded lattice with the order-

reversing involution ¬. Now we prove that (R1)–(R6) hold.
(R1) By (i) we have ¬y → ¬x = ¬(¬y) +¬x = y +¬x = x → y. Thus (R1) holds.

(R2) 1 → x = ¬1 + x = (1− 1) + x = 0 + x = x follows from (ii) and (DRL1).
(R3) Since (x → y) → (x → z) = (¬x + y) → (¬x + z) = ¬(¬x + y) + (¬x + z) =

(¬y − ¬x) + (¬x + z) = ((¬y − ¬x) + ¬x) + z > ¬y + z = y → z by Lemma 2.8(5,
6), we have (y → z) ∨ ((x → y) → (x → z)) = (x → y) → (x → z).

346



(R4) x → (y → z) = ¬x + (¬y + z) = ¬y + (¬x + z) = y → (x → z) by (DRL1).
(R5) x → (y ∨ z) = ¬x + (y ∨ z) = (¬x + y) ∨ (¬x + z) = (x → y) ∨ (x → z) by

(DRL3).

(R6) From (i), we know that ¬ is an order-reversing involution mapping, which
implies that ¬(x∧y) = ¬x∨¬y for any x, y ∈ L. Thus ¬(x−y)∨¬((x∧¬y)−(x−y)) =
¬0 = 1−0 = 1 by (DRL8) and (ii). Since ¬(¬x+y) = 1−(¬x+y) = (1−¬x)−y = (1−
(1−x))−y = x−y by Lemma 2.8(5) and (DRL7), we have ¬(x−y) = ¬x+y = x → y,
and ¬((x∧¬y)−(x−y)) = ¬(x∧¬y)+(x−y) = (¬x∨y)+(x−y) = (x−y)+(¬x∨y) =
¬(¬(x−y))+(¬x∨y) = (¬(x−y)) → (¬x∨y) = (x → y) → (¬x∨y). Consequently,
(x → y)∨ ((x → y) → (¬x ∨ y)) = ¬(x− y)∨ ¬((x ∧ ¬y)− (x− y)) = 1. This shows
that (R6) holds.

From the above and Remark 1.3, we see that (L,∧,∨,¬,→, 0, 1) is an R0-algebra.
�

From Theorems 3.1 and 3.2, we can easily verify the following theorems.

Theorem 3.3. Let (Li,∨i,∧i,¬i,→i, 0i, 1i) (i = 1, 2) be R0-algebras and f :
L1 → L2 a homomorphism of R0-algebras. Then f is also a homomorphism of the

induced WDRL-semigroups (L1, +1, 01,∧1,∨1,−1) and (L2, +2, 02,∧2,∨2,−2).

Theorem 3.4. Let i = 1, 2 and (Li, +i, 0i,∨i,∧i,−i) be WDRL-semigroups with
the greatest elements 1i, respectively, and satisfy the identities (DRL7) and (DRL8).
Let f : L1 → L2 be a homomorphism of WDRL-semigroups such that f(11) =
12. Then f is also a homomorphism of the induced R0-algebras (L1,∧1,∨1,¬1,→1

, 01, 11) and (L2,∧2,∨2,¬2,→2, 02, 12).

Theorem 3.5. R0-algebras are categorically equivalent to bounded WDRL-
semigroups satisfying the identities (DRL7) and (DRL8).
���������

. If (L,∧,∨,¬,→, 0, 1) is an R0-algebra, let Γ(L) = (L, +, 0,∧,∨,−, 1).
For any R0-algebras L1, L2 and R0-algebra homomorphism f : L1 → L2, we define
Γ(f) : Γ(L1) → Γ(L2) by Γ(f) = f . If we denote by <0 the category of all R0-

algebras and by WDRL the category of all bounded WDRL-semigroups satisfying
(DRL7) and (DRL8), then Theorems 3.3 and 3.4 imply that Γ: <0 → WDRL is a

functor which is an equivalence. �
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347



References

[1] C.C.Chang: Algebraic analysis of many valued logics. Trans. Amer. Math. Soc. 88
(1958), 467–490. Zbl 0084.00704

[2] P.Hájek: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht,
1998. Zbl 0937.03030

[3] T.Kovář: A general theory of dually residuated lattice ordered monoids. Thesis, Palacký
Univ. Olomouc, 1996.

[4] T.Kovář: Two remarks on dually residuated lattice ordered semigroups. Math. Slovaca
49 (1999), 17–18. Zbl 0943.06007

[5] J.Rach̊unek: DRL-semigroups and MV -algebras. Czechoslovak Math. J. 123 (1998),
365–372. Zbl 0952.06014

[6] J.Rach̊unek:MV -algebras are categorically equivalent to a class ofDRL1(i)-semigroups.
Math. Bohem. 123 (1998), 437–441. Zbl 0934.06014

[7] L.Z. Liu and K.T.Li: Pseudo MTL-algebras and pseudo R0-algebras. Sci. Math. Jpn.
61 (2005), 423–427. Zbl 1080.06016

[8] D.W.Pei and G. J.Wang: The completeness and application of formal systems $. Sci-
ence in China (series E) 1 (2002), 56–64.

[9] K.L.N. Swamy: Dually residuated lattice ordered semigroups. Math. Ann. 159 (1965),
105–114. Zbl 0135.04203

[10] G.J.Wang: Non-classical Mathematical Logic and Approximate Reasoning. Science
Press, BeiJing, 2000.

Authors’ addresses: �
	 � �
	 � 
 � � � 
 , 1. College of Science, Southern Yangtze Univer-
sity, 214036 Wuxi, China; 2. College of Science, Xi’an Jiaotong University, 710049 Xi’an,
China, e-mail: lian712000@yahoo.com; �
	
� � 	�� � 	 , College of Science, Xi’an Jiaotong Uni-
versity, 710049 Xi’an, China.

348


		webmaster@dml.cz
	2020-07-03T15:53:39+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




