[2] H. Aikawa, M. Essén:
Potential Theory-Selected Topics. Lecture Notes in Math. Vol. 1633. Springer-Verlag, , 1996.
MR 1439503
[3] A. Ancona:
Positive Harmonic Functions and Hyperbolicity. Lecture Notes in Math. Vol. 1344, Springer-Verlag, 1987, pp. 1–23.
MR 0973878
[4] D. H. Armitage, Ü. Kuran:
On positive harmonic majorization of $y$ in $\mathbb{R}^{n}\times (0,+\infty )$. J. London Math. Soc. Ser. II 3 (1971), 733–741.
MR 0289799
[5] D. H. Armitage, S. J. Gardiner:
Classical Potential Theory. Springer-Verlag, , 2001.
MR 1801253
[6] V. S. Azarin: Generalization of a theorem of Hayman on subharmonic functions in an $m$-dimensional cone Am. Math. Soc. Transl. II. Ser. 80 (1969), 119–138.
[7] A. Beurling:
A minimum principle for positive harmonic functions. Ann. Acad. Sci. Fenn. Ser. AI. Math. 372 (1965), .
MR 0188466 |
Zbl 0139.06402
[8] M. Brelot:
On Topologies and Boundaries in Potential Theory. Lect. Notes in Math. Vol. 175. Springer-Verlag, , 1971.
MR 0281940
[9] R. Courant, D. Hilbert: Methods of Mathematical Physics, 1st English edition. Interscience, New York, 1954.
[10] B. E. J. Dahlberg:
A minimum principle for positive harmonic functions. Proc. London Math. Soc. 33 (1976), 2380–250.
MR 0409847 |
Zbl 0342.31004
[11] J. L. Doob:
Classical Potential Theory and its Probabilistic Counterpart. Springer-Verlag, 1984.
MR 0731258 |
Zbl 0549.31001
[13] D. Gilbarg, N. S. Trudinger:
Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin, 1977.
MR 0473443
[15] V. G. Maz’ya:
Beurling’s theorem on a minimum principle for positive harmonic functions. Zapiski Nauchnykh Seminarov LOMI 30 (1972).
MR 0330484
[16] I. Miyamoto, M. Yanagishitam, and H. Yoshida:
Beurling-Dahlberg-Sjögren type theorems for minimally thin sets in a cone. Canad. Math. Bull. 46 (2003), 252–264.
DOI 10.4153/CMB-2003-025-5 |
MR 1981679
[17] I. Miyamoto, H. Yoshida:
Two criteria of Wiener type for minimally thin sets and rarefied sets in a cone. J. Math. Soc. Japan 54 (2002), 487–512.
DOI 10.2969/jmsj/1191593906 |
MR 1900954
[18] P. Sjögren:
Une propriété des fonctions harmoniques positives d’après Dahlberg, Séminaire de théorie du potentiel. Lecture Notes in Math. Vol. 563, Springer-Verlag, , 1976, pp. 275–282.
MR 0588344
[19] E. M. Stein:
Singular Integrals and Differentiability Properties of Functions. Princeton University Press, 1970.
MR 0290095 |
Zbl 0207.13501
[20] H. Yoshida:
Nevanlinna norm of a subharmonic function on a cone or on a cylinder. Proc. London Math. Soc. Ser. III 54 (1987), 267–299.
MR 0872808 |
Zbl 0645.31003
[21] Y. Zhang:
Ensembles équivalents a un point frontière dans un domaine lipshitzien, Séminaire de théorie du potentiel. Lecture Note in Math. Vol. 1393, Springer-Verlag, , 1989, pp. 256–265.
MR 1663163