Article
Keywords:
$C^*$-algebra homomorphism; $C^*$-algebra; real rank zero; $\mathbb{C}$-linear $*$-derivation; stability
Summary:
It is shown that every almost linear Pexider mappings $f$, $g$, $h$ from a unital $C^*$-algebra $\mathcal A$ into a unital $C^*$-algebra $\mathcal B$ are homomorphisms when $f(2^n uy)=f(2^n u)f(y)$, $g(2^n uy)=g(2^nu)g(y)$ and $h(2^n uy)=h(2^n u)h(y)$ hold for all unitaries $u \in \mathcal A$, all $y \in \mathcal A$, and all $n\in \mathbb{Z}$, and that every almost linear continuous Pexider mappings $f$, $g$, $h$ from a unital $C^*$-algebra $\mathcal A$ of real rank zero into a unital $C^*$-algebra $\mathcal B$ are homomorphisms when $f(2^n uy)=f(2^n u)f(y)$, $g(2^n uy)=g(2^n u)g(y)$ and $h(2^n uy)=h(2^n u)h(y)$ hold for all $u \in \lbrace v\in \mathcal A\mid v=v^*\hspace{5.0pt}\text{and}\hspace{5.0pt}v\hspace{5.0pt}\text{is} \text{invertible}\rbrace $, all $y\in \mathcal A$ and all $n\in \mathbb{Z}$. Furthermore, we prove the Cauchy-Rassias stability of $*$-homomorphisms between unital $C^*$-algebras, and $\mathbb{C}$-linear $*$-derivations on unital $C^*$-algebras.
References:
[2] P. Găvruta:
A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 184 (1994), 431–436.
DOI 10.1006/jmaa.1994.1211 |
MR 1281518
[4] K. Jun, B. Kim and D. Shin:
On Hyers-Ulam-Rassias stability of the Pexider equation. J. Math. Anal. Appl. 239 (1999), 20–29.
MR 1719096
[6] R. V. Kadison and J. R. Ringrose:
Fundamentals of the Theory of Operator Algebras. Elementary Theory. Academic Press, New York, 1994.
MR 0719020