Previous |  Up |  Next

Article

Keywords:
oscillation; sublinear differential equation; integral averages
Summary:
New oscillation criteria are given for the second order sublinear differential equation \[ [a(t)\psi (x(t))x^{\prime }(t)]^{\prime }+q(t)f(x(t))=0, \quad t\ge t_0>0, \] where $a\in C^1([t_0,\infty ))$ is a nonnegative function, $\psi , f\in C({\mathbb R})$ with $\psi (x)\ne 0$, $xf(x)/\psi (x)>0$ for $x\ne 0$, $\psi $, $f$ have continuous derivative on ${\mathbb R}\setminus \lbrace 0\rbrace $ with $[f(x)/\psi (x)]^{\prime }\ge 0$ for $x\ne 0$ and $q\in C([t_0,\infty ))$ has no restriction on its sign. This oscillation criteria involve integral averages of the coefficients $q$ and $a$ and extend known oscillation criteria for the equation $x^{\prime \prime }(t)+q(t)x(t)=0$.
References:
[1] B. Ayanlar and A. Tiryaki: Oscillation theorems for nonlinear second-order differential equations. Comput. Math. Appl. 44 (2002), 529–538. DOI 10.1016/S0898-1221(02)00167-0 | MR 1912848
[2] Y. Chen: On the oscillation of nonlinear second order equations. J.  South China Normal Univ. Natur. Sci. Ed. 2 (1986), 99–103. MR 1005446
[3] S. R. Grace and B. S. Lalli: On the second order nonlinear oscillations. Bull. Inst. Math. Acad. Sinica 15 (1987), 297–309. MR 0942790
[4] S. R. Grace: Oscillation theorems for second order nonlinear differential equations with damping. Math. Nachr. 141 (1989), 117–127. DOI 10.1002/mana.19891410114 | MR 1014421 | Zbl 0673.34041
[5] S. R. Grace and B. S. Lalli: Integral averaging techniques for the oscillation of second order nonlinear differential equations. J.  Math. Anal. and Appl. 149 (1990), 277–311. DOI 10.1016/0022-247X(90)90301-U | MR 1054809
[6] S R. Grace: Oscillation theorems for nonlinear differential equations of second order. J.  Math. Anal. and Appl. 171 (1992), 220–241. DOI 10.1016/0022-247X(92)90386-R | MR 1192503 | Zbl 0767.34017
[7] M. Kirane and Y. V. Rogovchenko: Oscillation results for a second order damped differential equation with nonmonotonous nonlinearity. J.  Math. Anal. Appl. 250 (2000), 118–138. DOI 10.1006/jmaa.2000.6975 | MR 1893881
[8] T. Kura: Oscillation theorems for second order nonlinear differential equations. Proc. Amer. Math. Soc. 84 (1982), 535–538. DOI 10.1090/S0002-9939-1982-0643744-8 | MR 0643744
[9] M. K. Kwong and J. S. W. Wong: On an oscillation theorem of Belohorec. SIAM J.  Math. Anal. 14 (1983), 474–476. DOI 10.1137/0514040 | MR 0697523
[10] H. J. Li and C. C. Yeh: Oscillation of second order sublinear differential equations. Dynamic Systems Appl. 6 (1997), 529–534. MR 1487476
[11] J. V. Manojlović: Oscillation criteria for second order sublinear differential equation. Math. Comp. Modelling 30 (1999), 109–119. DOI 10.1016/S0895-7177(99)00151-X | MR 1753568
[12] J. V. Manojlović: Oscillation criteria for second order sublinear differential equation. Computers and Mathematics with Applications 39 (2000), 161–172. DOI 10.1016/S0898-1221(00)00094-8
[13] J. V. Manojlović: Integral averages and oscillation of second order nonlinear differential equations. Computers and Mathematics with Applications 41 (2001), 1521–1534. DOI 10.1016/S0898-1221(01)00117-1 | MR 1831815
[14] Ch. G. Philos: Oscillation of sublinear differential equations of second order. Nonlinear Anal. 7 (1983), 1071–1080. DOI 10.1016/0362-546X(83)90016-0 | MR 0719359 | Zbl 0525.34028
[15] Ch. G. Philos: On second order sublinear oscillation. Aequationes Math. 27 (1984), 242–254. DOI 10.1007/BF02192675 | MR 0762684 | Zbl 0545.34026
[16] Ch. G. Philos: Integral averaging techniques for the oscillation of second order sublinear ordinary differential equations. J.  Austral. Math. Soc. (Series  A) 40 (1986), 111–130. DOI 10.1017/S1446788700026549 | MR 0809730 | Zbl 0583.34028
[17] Ch. G. Philos: Oscillation theorems for linear differential equations of second order. Arch. Math. (Basel) 53 (1989), 482–492. DOI 10.1007/BF01324723 | MR 1019162 | Zbl 0661.34030
[18] Ch. G. Philos: Integral averages and oscillation of second order sublinear differential equations. Diff. Integ. Equat. 4 (1991), 205–213. MR 1079621 | Zbl 0721.34026
[19] J. Yan: A note on second order sublinear oscillation theorems. J.  Math. Anal. and Appl. 104 (1984), 103–106. DOI 10.1016/0022-247X(84)90034-9 | MR 0765043 | Zbl 0609.34045
[20] J. S. W. Wong: An oscillation criterion for second order sublinear differential equations. Conf. Proc. Canad. Math. Soc. 8 (1987), 299–302. MR 0909919 | Zbl 0624.34027
[21] J. S. W. Wong and C. C. Yeh: An oscillation criterion for second order sublinear differential equations. J.  Math. Anal. Appl. 171 (1992), 346–351. DOI 10.1016/0022-247X(92)90348-H | MR 1194084
[22] J. S. W. Wong: Oscillation criteria for second order nonlinear differential equations involving general means. J.  Math. Anal. Appl. 247 (2000), 489–505. DOI 10.1006/jmaa.2000.6855 | MR 1769091 | Zbl 0964.34028
Partner of
EuDML logo