Article
Keywords:
central quasigroups; $T$-quasigroups; multiplication groups; Frobenius groups; quasigroups isotopic to Abelian groups
Summary:
If $Q$ is a quasigroup that is free in the class of all quasigroups which are isotopic to an Abelian group, then its multiplication group $\mathop {\mathrm Mlt}Q$ is a Frobenius group. Conversely, if $\mathop {\mathrm Mlt}Q$ is a Frobenius group, $Q$ a quasigroup, then $Q$ has to be isotopic to an Abelian group. If $Q$ is, in addition, finite, then it must be a central quasigroup (a $T$-quasigroup).
References:
[2] V. D. Belousov:
Balanced identities in quasigroups. Matem. sbornik (N.S.) 70 (1966), 55–97. (Russian)
MR 0202898 |
Zbl 0199.05203
[3] V. D. Belousov:
Osnovy teorii kvazigrupp i lup. Nauka, Moskva, 1967.
MR 0218483
[4] G. B. Belyavskaya:
$T$-quasigroups and the centre of a quasigroup. Matem. Issled. 111 (1989), 24–43. (Russian)
MR 1045383
[5] G. B. Belyavskaya:
Abelian quasigroups and $T$-quasigroups. Quasigroups and related systems 1 (1994), 1–7.
MR 1327941
[6] R. H. Bruck:
A Survey of Binary Systems. Springer-Verlag, 1971.
MR 0093552
[7] O. Chein, H. O. Pflugfelder and J. D. H. Smith:
Quasigroups and Loops: Theory and Applications. Heldermann, Berlin, 1990.
MR 1125806
[8] A. Drápal:
Multiplication groups of free loops I. Czechoslovak Math. J. 46 (1996), 121–131.
MR 1371694
[9] A. Drápal:
Multiplication groups of free loops II. Czechoslovak Math. J. 46 (1996), 201–220.
MR 1388610
[12] G. Grätzer:
Universal Algebra. Van Nostrand, Princeton, 1968.
MR 0248066
[13] J. Ježek and T. Kepka:
Quasigroups isotopic to a group. Comment. Math. Univ. Carolin. 16 (1975), 59–76.
MR 0367103
[14] J. Ježek:
Normal subsets of quasigroups. Comment. Math. Univ. Carolin. 16 (1975), 77–85.
MR 0367104
[15] J. Ježek:
Univerzální algebra a teorie modelů. SNTL, Praha, 1976.
MR 0546057
[16] T. Kepka and P. Němec:
$T$-quasigroups I. Acta Univ. Carolin. Math. Phys. 12 (1971), 39–49.
MR 0320206
[17] T. Kepka and P. Němec:
$T$-quasigroups II. Acta Univ. Carolin. Math. Phys. 12 (1971), 31–49.
MR 0654381