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INTEGRAL AVERAGES AND OSCILLATION OF SECOND ORDER

SUBLINEAR DIFFERENTIAL EQUATIONS

� ����� � � �	� 
�� � ��
 � � ��� �� , Niš

(Received February 25, 2002)

Abstract. New oscillation criteria are given for the second order sublinear differential
equation

[a(t)ψ(x(t))x′(t)]′ + q(t)f(x(t)) = 0, t > t0 > 0,

where a ∈ C1([t0,∞)) is a nonnegative function, ψ, f ∈ C( � ) with ψ(x) 6= 0, xf(x)/ψ(x) >
0 for x 6= 0, ψ, f have continuous derivative on � \ {0} with [f(x)/ψ(x)]′ > 0 for x 6= 0
and q ∈ C([t0,∞)) has no restriction on its sign. This oscillation criteria involve integral
averages of the coefficients q and a and extend known oscillation criteria for the equation
x′′(t) + q(t)x(t) = 0.

Keywords: oscillation, sublinear differential equation, integral averages

MSC 2000 : 34C10, 34C15

1. Introduction

We consider the second order nonlinear differential equation

(E) [a(t)ψ(x(t))x′(t)]′ + q(t)f(x(t)) = 0

where

(i) a ∈ C1([t0,∞)), a(t) > 0 for t > t0,

(ii) q ∈ C([t0,∞)) has no restriction on its sign,
(iii) ψ, f ∈ C1( � ) satisfy

(F1) ψ(x) 6= 0, x
f(x)
ψ(x)

> 0 for x 6= 0,
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and f(x)/ψ(x) is strongly sublinear in the sense that

∫

0+

ψ(u)
f(u)

du <∞, and
∫

0−

ψ(u)
f(u)

du <∞,

(iv) ψ and f are continuously differentiable on � \ {0} and satisfy

(F2)
( f(x)
ψ(x)

)′
> 0 for x 6= 0.

We assume throughout that every solution x(t) of the differential equation (E) is
nontrivial and can be continued to the right, i.e. every solution x(t) is defined on
some ray [T,∞), where T > t0 may depend on the particular solution, and

sup{|x(t)| : t > T} > 0 for every T > t0.

The oscillatory character of such solutions is considered in the usual sense, i.e. a so-

lution of (E) is said to be oscillatory if it has arbitrarily large zeros, otherwise, it
is said to be nonoscillatory. The equation (E) is called oscillatory if all nontrivial
continuable solutions are oscillatory.

In the study of the oscillation of second order nonlinear differential equations,
many criteria have been found which involve the average behavior of the integral of

the coefficients. The differential equation

(E1) x′′(t) + q(t)|x(t)|γ sgnx(t) = 0, t ∈ [t0,∞),

where q is a continuous real-valued function on [t0,∞) without any restriction on its
sign, which is known in the literature as the equation of the Emden-Fowler type, is

of particular interest in such averaging techniques. In the sublinear case 0 < γ < 1,
Chen [2] proved that the equation (E1) is oscillatory if there exists a positive func-
tion % with %′′ 6 0 such that

(A1) lim sup
t→∞

1
tn − 1

∫ t

t0

(t− s)n−1%γ(s)q(s) ds = ∞,

for some integer n > 2.
Wong [20] also proved: if % : [0,∞) → [0,∞) is a positive nondecreasing concave

function, i.e. % > 0, %′ > 0, %′′ 6 0, then

(A2) lim sup
t→∞

1
tα

∫ t

t0

(t− s)α%(s)q(s) ds = ∞, for some α > 1,

suffices for the oscillation of the differential equation (E1).
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Note that from Wong’s result, by choosing %(t) = tβ , β ∈ [0, γ], we obtain the
result given by Yan in [19]. By applying Chen’s result for n = 2 and %(t) = tβ/γ ,
β ∈ [0, γ], we obtain the result due to Kwong, Wong [9].
Recently, Philos [18] andWong and Yeh [21] extended those results to the nonlinear

differential equation of the form

(E2) x′′(t) + q(t)f(x(t)) = 0, t ∈ [t0,∞),

where f is a continuous function on the real line � , strongly sublinear in the sense
that ∫

0+

du
f(u)

<∞, and
∫

0−

du
f(u)

<∞,

and f has continuous derivative on � \ {0} and satisfies

xf(x) > 0, and f ′(x) > 0 for all x 6= 0.

Namely, Philos in [18] introduced the nonnegative constant

If = min

{ inf
x>0

f ′(x)F (x)

1 + inf
x>0

f ′(x)F (x)
,

inf
x<0

f ′(x)F (x)

1 + inf
x<0

f ′(x)F (x)

}
> 0,

where

F (x) =
∫ x

0+

du
f(u)

for x > 0, F (x) =
∫ x

0−

du
f(u)

for x < 0,

and proved that the equation (E2) is oscillatory if there exists a positive and twice
continuously differentiable function % on [t0,∞) with %′ > 0, %′′ 6 0 on [t0,∞), such
that the condition (A1) holds for γ = If and some integer n > 2.
Moreover, Wong and Yeh [21] proved that the equation (E2) is oscillatory if for

some α > 1, q(t) satisfies

(A3) lim sup
t→∞

1
tα

∫ t

t0

(t− s)α%β(s)q(s) ds = ∞,

where β ∈ [0, If ] and % ∈ C2([t0,∞)) is a positive concave function.
Letting n = 2 in Philos’s result we obtain Theorem 1 of [15] and by taking %(t) = 1,

t > t0 if If = 0, or %(t) = tλ/β , t > t0, 0 6 λ 6 If if If > 0, we have the results of
Philos in [14].
Furthermore, Philos in [18] also proved the following theorem:
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Theorem A. Let n be an integer with n > 2 and % be a positive and twice
continuously differentiable function on [t0,∞) such that

(R) [%′(t)]2 6 −c %(t)%′′(t) for every t > t0,

for some positive constant c. The equation (E2) is oscillatory if there exists a con-
tinuous function ϕ on [t0,∞) with

(C1)
∫ ∞

t0

ϕ2
+(s)
s

ds = ∞, ϕ+(s) = max{ϕ(s), 0}, s > t0,

and such that

(A4) lim sup
t→∞

1
tn−1

∫ t

T

(t− s)n−1%If (s)q(s) ds > ϕ(T ) for every T > t0.

For n = 2 we obtain a previous result due to same author [16, Theorem 1].
The purpose of this paper is to prove analogous extensions of the above men-

tioned results to the more general differential equation (E) by using more general

conditions than (A3) and (A4). Namely, the established oscillation criterion relates
on an integral averaging technique introduced by Philos [17] who used kernel function

H : D = {(t, s) : t > s > t0} → �
and obtained new oscillation criteria for the linear differential equation (L). Grace [6],

Li, Yeh [10], Wong [22] and the author [11], [12], [13] proceeded further in this
direction and established oscillation criteria in terms of more general means for the

second order nonlinear equation (E).
A great deal of oscillation criteria for the equation (E) has been obtained by

using the technique which involves the average behavior of the integral of the coeffi-
cients a(t) and q(t). But, all these results have been obtained under the assumption
that for x 6= 0, x f(x) > 0, ψ(x) > 0 and either

(∗) f ′(x) > k > 0

(see [10]), or

(∗∗) f ′(x)
ψ(x)

> K > 0,

(see [4] and [6]). Very recently, Kirane and Rogovchenko [7] derived new oscillation

criteria for the nonlinear equation

(Ep) [a(t)ψ(x(t))x′(t)]′ + p(t)x′(t) + q(t)f
(
x(t)

)
= 0
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without the assumption that f(x) has to be nondecreasing. They established oscil-
lation criteria under the following conditions for the nonlinearities f(x) and ψ(x)

(∗∗∗) f(x)
x

> K > 0, 0 < c 6 ψ(x) 6 c1, for x 6= 0.

Nevertheless, it still remains to establish the oscillation of the equation (E) without

the restriction of the positivity of the function ψ(x). So, an essential feature of
the proved results is that the assumption of positivity of the function ψ(x) is not
required. Consequently, our criteria cover new classes of equations to which known
results do not apply.

2. Main results

In this section we will establish three oscillation criteria for the differential equa-

tion (E) supposing that the functions f(x) and ψ(x) satisfy the condition

(F3)
f(x)ψ′(x)
ψ2(x)

> 1
k
> 0, for x 6= 0.

For our purpose, we define

Φ(x) =
∫ x

0+

ψ(u)
f(u)

du for x > 0, Φ(x) =
∫ x

0−

ψ(u)
f(u)

du for x < 0

and introduce the nonnegative constant

Mf,ψ = min

{ inf
x>0

Φ(x)
(
f(x)/ψ(x)

)′

1 + inf
x>0

Φ(x)
(
f(x)/ψ(x)

)′ ,
inf
x<0

Φ(x)
(
f(x)/ψ(x)

)′

1 + inf
x<0

Φ(x)
(
f(x)/ψ(x)

)′

}
.

Also, in order to simplify notation we define the function

χ(t) =
q(t)
a(t)

− k

4

(a′(t)
a(t)

)2

.

Theorem 2.1. Let % ∈ C2([t0,∞)) be a positive concave function and let the
functions f, ψ ∈ C1( � ) satisfy the conditions (iii), (iv) and (F3). Suppose that there
exists a continuous function

H : D = {(t, s) | t > s > t0} → �
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such that

H(t, t) = 0 for t > t0, H(t, s) > 0 for t > s > t0,(H1)

∂H(t, t)
∂s

= 0 for t > t0,
∂H(t, s)
∂s

6 0 for (t, s) ∈ D ,(H2)

∂2H(t, s)
∂s2

> 0 for (t, s) ∈ D(H3)

lim inf
t→∞

∂H(t, s)
∂s

/H(t, s) > −∞ for s > t0.(H4)

The equation (E) is oscillatory if for some β ∈ [0,Mf,ψ]

(C2) lim sup
t→∞

1
H(t, T )

∫ t

T

H(t, s)%β(s)χ(s) ds = ∞ for every T > t0.

���������
. Assume to the contrary that there exists a nonoscillatory solution x(t)

on [T,∞). Furthermore, we define w(t) by

(1) w(t) = %β(t)Φ(x(t)), t > T.

By differentiation we obtain for t > T

(2) w′(t) = %β
ψ(x)
f(x)

x′ + β
%′

%
w,

which implies

w′′ = %β
ψ(x)
f(x)

x′′ + β%β
%′

%

ψ(x)
f(x)

x′ − %βψ(x)
( x′

f(x)

)2

f ′(x)(3)

+ %β
ψ′(x)
f(x)

x′
2 + β

[%′′
%
−

(%′
%

)2]
w + β

%′

%
w′.

Since from (2) we have that

x′

f(x)
=

1
%βψ(x)

(
w′ − β

%′

%
w

)
,
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we obtain

%β
ψ′(x)
f(x)

x′
2 =

(
w′ − β

%′

%
w

)2 ψ′(x)f(x)
%βψ2(x)

(4)

=
(
w′ − β

%′

%
w

)2 ψ′(x)f(x)Φ(x)
wψ2(x)

and

%βψ(x)
( x′

f(x)

)2

f ′(x) =
(
w′ − β

%′

%
w

)2 f ′(x)
%βψ(x)

(5)

=
(
w′ − β

%′

%
w

)2 Φ(x)f ′(x)
wψ(x)

.

Now, by subtracting (4) and (5), we obtain

%β
ψ′(x)
f(x)

x′
2 − %βψ(x)

( x′

f(x)

)2

f ′(x)

=
Φ(x)
w

(
w′ − β

%′

%
w

)2 f(x)ψ′(x)− f ′(x)ψ(x)
ψ2(x)

= − 1
w

(
w′ − β

%′

%
w

)2

Φ(x)
( f(x)
ψ(x)

)′
.

According to selection of the number β,

Φ(x)
( f(x)
ψ(x)

)′
> β

1− β
for x 6= 0,

so that the previous equality becomes

(6) %β
ψ′(x)
f(x)

x′
2 − %βψ(x)

( x′

f(x)

)2

f ′(x) 6 − β

1− β

1
w

(
w′ − β

%′

%
w

)2

.

Besides,

β%β
%′

%

ψ(x)
f(x)

x′ = β
%′

%

(
%β
ψ(x)
f(x)

x′ + β
%′

%
w

)
− β2

(%′
%

)2

w(7)

= β
%′

%

(
w′ − β

%′

%
w

)
.

Using the equation (E) and the conditions (C1), (C2) and (C3), we have

%β
ψ(x)
f(x)

x′′ = − %β
q

a
− %β

a′

a

ψ(x)
f(x)

x′ − %β
ψ′(x)
f(x)

x′
2(8)

= − %β
q

a
− %β

ψ′(x)
f(x)

(
x′ +

a′

2a
ψ(x)
ψ′(x)

)2

+
%β

4

(a′
a

)2 ψ2(x)
f(x)ψ′(x)

6 − %β
q

a
+
k

4
%β

(a′
a

)2

.
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Therefore, (3), (6), (7) and (8) imply

w′′ 6 − %β
q

a
+
k

4
%β

(a′
a

)2

+ β
%′

%

(
w′ − β

%′

%
w

)

− β

1− β

1
w

(
w′ − β

%′

%
w

)2

+ β
[%′′
%
−

(%′
%

)2]
w + β

%′

%
w′

= − %β
q

a
+
k

4
%β

(a′
a

)2

+ β
%′′

%
w + 2β

%′

%

(
w′ − β

%′

%
w

)

+ β(β − 1)
(%′
%

)2

w − β

1− β

1
w

(
w′ − β

%′

%
w

)2

= − %β
(
q

a
− k

4

(a′
a

)2
)

+ β
%′′

%
w

− β

1− β

1
w

(
w′ − β

%′

%
w − (1− β)

%′

%
w

)2

,

which gives for every t > T

(9) w′′(t) 6 −%β(t)χ(t) + β
%′′(t)
%(t)

w(t)− β

1− β

1
w(t)

(
w′(t)− %′(t)

%(t)
w(t)

)2

.

Consequently, using the fact that % is a positive and concave function, we have

(10) w′′(s) 6 −%β(s)χ(s) ∀s > T.

Multiplying the previous inequality through by H(t, s) and integrating from T to t,
we find

(11)
∫ t

T

H(t, s)%β(s)χ(s) ds 6 −
∫ t

T

H(t, s)w′′(s) ds.

Using integration by parts, by the conditions (H)1–(H)3, we get

−
∫ t

T

H(t, s)w′′(s) ds = H(t, T )w′(T )− ∂H

∂s
(t, T )w(T )(12)

−
∫ t

T

∂2H

∂s2
(t, s)w(s) ds 6 H(t, T )w′(T )− ∂H

∂s
(t, T )w(T ),

which by (11) and (H4), leads us to the following contradiction

lim sup
t→∞

1
H(t, T )

∫ t

T

H(t, s)%β(s)χ(s) ds

6 w′(T )− w(T ) lim inf
t→∞

∂H
∂s (t, T )
H(t, T )

<∞.

�
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Remark 1. By applying Theorem 2.1 with a(t) ≡ 1 and ψ(x) ≡ 1, taking
H(t, s) = (t − s)λ for some constant λ > 1, which obviously satisfies the condi-
tions (H)1–(H)4, we obtain the oscillation criterion of Wong and Yeh in [21].

Example 1. Consider the differential equation

(E3) [tνx3(t)x′(t)]′ + q(t)[|x(t)|α+3 + x4(t)] = 0, 0 < α < 1

where q(t) = λtλ−1(2 − cos t) + tλ sin t, ν < 1
2α and λ − ν + 1

2α > 0. Then for all
x 6= 0

x
f(x)
ψ(x)

> 0,
f(x)ψ′(x)
ψ2(x)

> 3 = k,
( f(x)
ψ(x)

)′
= α|x|α−1 + 1 > 0,

so that the conditions (C1), (C2) and (C3) are satisfied.

Further, for every x 6= 0

Φ(x) =
∫ |x|

0+

du
uα + u

6
∫ |x|

0+

du
uα

=
|x|1−α
1− α

and consequently

inf
x>0

Φ(x)
( f(x)
ψ(x)

)′
= inf

x<0
Φ(x)

( f(x)
ψ(x)

)′
6 inf

x>0

|x|1−α
1− α

(αxα−1 + 1) =
α

1− α
.

On the other hand, for every x 6= 0, we have

Φ(x) =
∫ |x|

0+

du
uα + u

>
∫ |x|

0+

du
2uα

=
|x|1−α

2(1− α)
, if |x| 6 1

and

Φ(x) =
∫ |x|

0+

du
uα + u

>
∫ 1

0+

du
uα + u

>
∫ 1

0+

du
2uα

=
1

2(1− α)
, if |x| > 1

and therefore for x 6= 0 we have

Φ(x)
( f(x)
ψ(x)

)′
> |x|1−α

2(1− α)
(αxα−1 + 1) =

α+ |x|1−α
2(1− α)

>
α

2(1− α)
for |x| 6 1

and

Φ(x)
( f(x)
ψ(x)

)′
> αxα−1 + 1

2(1− α)
>

α

2(1− α)
for |x| > 1.
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Hence,

inf
x>0

Φ(x)
( f(x)
ψ(x)

)′
= inf
x<0

Φ(x)
( f(x)
ψ(x)

)′
> α

2(1− α)
.

Accordingly, Mf,ψ > 1
2α.

Next, for any t > T > t0, we have

∫ t

T

q(s) ds =
∫ t

T

d[sλ(2− cos s)] = tλ(2− cos t)− T λ(2 + cosT )

= tλ(2− cos t)− k0,

so that

tλ − k0 6
∫ t

T

q(s) ds 6 3tλ for every t > T > t0.

Consequently, for arbitrary positive number δ such that δ + λ > 0, we have

1
t2

∫ t

T

(t− s)2sδq(s) ds =
1
t2

∫ t

T

(t− s)2sδ d
(∫ s

T

q(u) du
)

=
1
t2

∫ t

T

[2(t− s)sδ − δsδ−1(t− s)2]
(∫ s

T

q(u) du
)

ds

=
1
t2

∫ t

T

[2t(1 + δ)sδ − δt2sδ−1 − (δ + 2)sδ+1]
(∫ s

T

q(u) du
)

ds

> 1
t2

∫ t

T

[2(1 + δ)tsδ(sλ − k0)− 3(δ + 2)sδ+λ+1 − 3δt2sδ+λ−1] ds

= L1t
δ+λ + L2t

δ +
L3

t2
+
L4

t
+ L5

where

L1 =
2(1 + δ)
δ + λ+ 1

− 3(δ + 2)
δ + λ+ 2

− 3δ
δ + λ

, L2 = −2k0, L5 =
3δ

λ+ δ
T λ+δ

L3 =
3(δ + 2)
δ + λ+ 2

T δ+λ+2, L4 = 2k0T
δ+1 − 2(δ + 1)

δ + λ+ 1
T δ+λ+1.

Moreover, for every T > t0

(13) lim
t→∞

1
t2

∫ t

T

(t− s)2s
1
2α−2 ds =

2
2− α

T
1
2α−1.

Taking %(t) = t, β = 1
2α, δ = 1

2α − ν > 0 (δ + λ > 0) and H(t, s) = (t − s)2 for
t > s > t0, we see that the condition (C2) is satisfied, because

lim sup
t→∞

1
t2

∫ t

T

[
(t− 2)2s

1
2α−νq(s)− 3ν2

4
(t− s)2s

1
2α−2

]
ds = ∞.

Consequently, the equation (E3) is oscillatory by Theorem 2.1.
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We note that since f(x) = |x|α+3 + x4, 0 < α < 1 and ψ(x) = x3, none of the

conditions (∗), (∗∗) and (∗∗∗) is satisfied, so that none of the oscillation criteria in [4],
[6], [7] and [10] can cover this result. We believe that none of the known oscillation
criteria can really cover this result.

Theorem 2.2. Let

(i) % ∈ C2([t0,∞)) be a positive function which satisfies the condition (R) for some
positive constant c,

(ii) H(t, s) be a twice continuously differentiable function on D with respect to the

second variable which satisfies the conditions (H)1–(H)4 and

0 < inf
s>t0

[
lim inf
t→∞

H(t, s)
H(t, t0)

]
6 ∞,(H5)

∫ ∞

t0

sΩ2(s) ds <∞, Ω(s) = lim sup
t→∞

(
−∂H(t, s)/∂s

H(t, s)

)
, s > t0.(H6)

Then the equation (E) is oscillatory if there exists a function ϕ ∈ C([t0,∞)) such
that (C1) holds and

(C3) lim sup
t→∞

1
H(t, T )

∫ t

T

H(t, s)%β(s)χ(s) ds > ϕ(T ),

for every T > t0 and some β ∈ [0,Mf,ψ].
���������

. Suppose that the equation (E) possesses a nonoscillatory solution x(t).
We consider a T0 > t0 such that x(t) 6= 0 for all t > T0 and we define the function w(t)
by (1) on [T0,∞). Then (9) is satisfied for all t > T0. Thus, using (12), we obtain

for all t > T > T0

lim sup
t→∞

1
H(t, T )

∫ t

T

H(t, s)%β(s)χ(s) ds

6 w′(T )− w(T ) lim inf
t→∞

∂H
∂s (t, T )
H(t, T )

− lim inf
t→∞

1
H(t, T )

∫ t

T

∂2H

∂s2
(t, s)w(s) ds

+ β lim sup
t→∞

1
H(t, T )

∫ t

T

H(t, s)
%′′(s)
%(s)

w(s) ds

− β

1− β
lim inf
t→∞

1
H(t, T )

∫ t

T

H(t, s)
w(s)

(
w′(s)− %′(s)

%(s)
w(s)

)2

ds.
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Accordingly, by the condition (C3), we conclude that

lim inf
t→∞

1
H(t, T )

∫ t

T

H(t, s)
w(s)

(
w′(s)− %′(s)

%(s)
w(s)

)2

ds <∞, T > T0,(14)

lim inf
t→∞

1
H(t, T )

∫ t

T

H(t, s)
(
−%

′′(s)
%(s)

)
w(s) ds <∞, T > T0,(15)

lim inf
t→∞

1
H(t, T )

∫ t

T

∂2H

∂s2
(t, s)w(s) ds <∞, T > T0,(16)

ϕ(T ) 6 w′(T ) + Ω(T )w(T ) for every T > T0.(17)

Because of (14) and (16) there exists a sequence {τn}n∈N in the interval (T0,∞)
with lim

n→∞
τn = ∞ and such that

lim
n→∞

1
H(τn, T0)

∫ τn

T0

(τn, s)
H

w(s)
(
w′(s)− %′(s)

%(s)
w(s)

)2

ds <∞,(18)

lim
n→∞

1
H(τn, T0)

∫ τn

T0

∂2H

∂s2
(τn, s)w(s) ds <∞.(19)

Now, we shall establish that

(20) lim sup
t→∞

w(t)
t

<∞.

Let us consider an arbitrary positive constant µ. By the condition (H5), we can
consider a constant % with

inf
s>t0

[
lim inf
t→∞

H(t, s)
H(t, t0)

]
> % > 0.

Suppose that (20) fails. Then there exists a T1 > T0 such that

w(t)
t

> µ

%
∀t > T1.

Thus, we obtain for t > T1

1
H(t, T0)

∫ t

T0

∂2H

∂s2
(t, s)w(s) ds > 1

H(t, T0)

∫ t

T1

∂2H

∂s2
(t, s)w(s) ds

> µ

%H(t, T0)

∫ t

T1

∂2H

∂s2
(t, s)s ds

=
µ

%H(t, T0)

(
H(t, T1)− T1

∂H

∂s
(t, T1)

)

> µ

%

H(t, T1)
H(t, t0)

.
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Since

lim inf
t→∞

H(t, T1)
H(t, t0)

> %,

we can choose a T2 > T1 so that

(21)
H(t, T1)
H(t, t0)

> % for every t > T2.

Consequently,
1

H(t, T0)

∫ t

T0

∂2H

∂s2
(t, s)w(s) ds > µ ∀t > T2.

Thus,
1

H(τn, T0)

∫ τn

T0

∂2H

∂s2
(τn, s)w(s) ds > µ for sufficiently large n,

which, since µ > 0 is arbitrary, proves that

lim
n→∞

1
H(τn, T0)

∫ τn

T0

∂2H

∂s2
(τn, s)w(s) ds = ∞

and therefore contradicts (19). So, we have proved (20).
Next, we shall prove that

(22)
∫ ∞

T0

1
w(s)

(
w′(s)− %′(s)

%(s)
w(s)

)2

ds <∞.

Suppose to the contrary that there exists a T1 > T0 such that

∫ t

T0

1
w(s)

(
w′(s)− %′(s)

%(s)
w(s)

)2

ds > µ

%
for every t > T1,

where µ is arbitrary positive constant. Then, for all t > T1

1
H(t, T0)

∫ t

T0

H(t, s)
w(s)

(
w′(s)− %′(s)

%(s)
w(s)

)2

ds

=
1

H(t, T0)

∫ t

T0

H(t, s) d
(∫ s

T0

1
w(τ)

(
w′(τ)− %′(τ)

%(τ)
w(τ)

)2

dτ
)

=
1

H(t, T0)

∫ t

T0

(
−∂H
∂s

(t, s)
)(∫ s

T0

1
w(τ)

(
w′(τ) − %′(τ)

%(τ)
w(τ)

)2

dτ
)

ds

> 1
H(t, T0)

∫ t

T1

(
−∂H
∂s

(t, s)
)(∫ s

T0

1
w(τ)

(
w′(τ) − %′(τ)

%(τ)
w(τ)

)2

dτ
)

ds

> µ

%H(t, T0)

∫ t

T1

(
−∂H
∂s

(t, s)
)

ds =
µ

%

H(t, T1)
H(t, t0)

.
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By (21) we get

1
H(t, T0)

∫ t

T0

H(t, s)
w(s)

(
w′(s)− %′(s)

%(s)
w(s)

)2

ds > µ ∀t > T2,

and consequently for sufficiently large n

1
H(τn, T0)

∫ τn

T0

H(τn, s)
w(s)

(
w′(s)− %′(s)

%(s)
w(s)

)2

ds > µ

which contradicts (18) and therefore proves (22).

By similar arguments, using (15), we can prove that

(23)
∫ ∞

T0

w(s)
(
−%

′′(s)
%(s)

)
ds <∞.

Next, using the fact that % is concave function, we obtain for t > T0

%(t)− %(T0) =
∫ t

T0

%′(s) ds > (t− T0)%′(t),

which ensures that

(24) lim sup
t→∞

t%′(t)
%(t)

<∞.

Using (R), we derive, for every t > T0

∫ t

T0

1
w(s)

(
w′(s)− %′(s)

%(s)
w(s)

)2

ds,

=
∫ t

T0

[w′(s)]2

w(s)
ds− 2

∫ t

T0

%′(s)
%(s)

w′(s) ds+
∫ t

T0

(%′(s)
%(s)

)2

w(s) ds

=
∫ t

T0

[w′(s)]2

w(s)
ds− 2

%′(t)
%(t)

w(t) + 2
%′(T0)
%(T0)

w(T0)

+2
∫ t

T0

%′′(s)
%(s)

w(s) ds−
∫ t

T0

(%′(s)
%(s)

)2

w(s) ds

>
∫ t

T0

[w′(s)]2

w(s)
ds− 2

%′(t)
%(t)

w(t) + 2
%′(T0)
%(T0)

w(T0)

+ (c+ 2)
∫ t

T0

%′′(s)
%(s)

w(s) ds.
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Therefore,

∫ ∞

T0

[w′(s)]2

w(s)
ds 6 2

[
lim sup
t→∞

t %′(t)
%(t)

][
lim sup
t→∞

w(t)
t

]
− 2

%′(T0)
%(T0)

w(T0)

+(c+ 2)
∫ ∞

T0

(
−%

′′(s)
%(s)

)
w(s) ds

+
∫ ∞

T0

1
w(s)

(
w′(s)− %′(s)

%(s)
w(s)

)2

ds,

which, because of (20), (22), (23) and (24), implies

(25)
∫ ∞

T0

[w′(s)]2

w(s)
ds <∞.

Finally, by using (17)

∫ ∞

T0

[ϕ+(s)]2

s
ds 6

∫ ∞

T0

[w′(s) + Ω(s)w(s)]2

s
ds

6 M

∫ ∞

T0

[w′(s) + Ω(s)w(s)]2

w(s)
ds

6 2M
∫ ∞

T0

[w′(s)]2

w(s)
ds+ 2M

∫ ∞

T0

Ω2(s)w(s) ds

6 2M
∫ ∞

T0

[w′(s)]2

w(s)
ds+ 2M2

∫ ∞

t0

sΩ2(s) ds,

where M = sup
t>T0

w(t)/t and by (20), M is finite. Thus, because of (25), (C1) and

(H6), we come to a contradiction. �

Remark 2. Taking H(t, s) = (t− s)n−1 for some integer n > 2, for the particular
case of the equation (E2), we obtain Theorem A.
We observe that Theorem 2.2 can be applied in some cases in which Theorem 2.1

is not applicable. Such a case is described in the following example:

Example 2. Consider the differential equation (E3), where q(t) = tλ cos t and
λ − ν + 1

2α < 0. Then as in Example 1, the conditions (C1), (C2) and (C3) are
satisfied and Mf,ψ > 1

2α.

We can take β = 1
2α, %(t) = t2µ/α for some µ ∈

[
0, 1

2α
)
and H(t, s) = (t− s)2 for

t > s > t0. Then, the condition (R) is satisfied for arbitrary constant c such that
c > 2µ/(α− 2µ) and the conditions (H)1–(H)6 are satisfied.
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So, using (13), for δ = λ− ν + µ < 0 and for every T > t0, we obtain

lim sup
t→∞

1
t2

∫ t

T

[
(t− s)2sδ cos s− 3ν2

4
(t− s)2s

1
2α−2

]
ds

> − T δ sinT + T δ − 3ν2

4− 2α
T

1
2α−1.

Since δ < 0 and 1
2α − 1 < 0, for arbitrary small constant ε > 0, there exists a

t1 > t0 such that for T > t1

lim sup
t→∞

1
t2

∫ t

T

[
(t− s)2sδ cos s− 3ν2

4
(t− s)2s

1
2α−2

]
ds > −T δ sinT − ε.

Now, set ϕ(T ) = −T δ sinT − ε and consider an integer N such that 2N � + 5
4 � >

max
{
t1,

(
1 +

√
2ε

)1/δ}
. Then, for all integers n > N , we have

ϕ(T ) > 1√
2
for every T ∈

[
2n � + 5

4 � , 2n � + 7
4 �

]
,

which implies

∫ ∞

t0

ϕ2 + (s)
s

ds >
∞∑

n=N

1
2

∫ 2n � +7 � /4
2n � +5 � /4

1
s

ds

=
1
2

∞∑

n=N

ln
(

1 +
1
2 �

2n � + 5
4 �

)
= ∞.

Accordingly, all conditions of Theorem 2.2 are satisfied and hence the equa-
tion (E3) is oscillatory.
Notice that Theorem 2.1 is not applicable to the equation (E3) in this case, since

the condition (C2) is not satisfied.

Theorem 2.3. Let
(i) % ∈ C2([t0,∞)) be a positive function such that

(R1) %′(t) > 0 and %′′(t) 6 0 for every t > t0,

(ii) H(t, s) be a twice continuously differentiable function on D with respect to the

second variable which satisfies the conditions (H)1–(H)6. Then the equation (E)
is oscillatory if there exists a function ϕ ∈ C([t0,∞)) such that (C3) holds for
every T > t0 and some β ∈ [0,Mf,ψ] and

(C4) lim sup
t→∞

[∫ t

t0

(%′(s)
%(s)

)2

s ds
]−1 ∫ t

t0

ϕ2
+(s)
s

ds = ∞.
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���������
. Let x(t) be a solution of the differential equation (E) on an interval

[T0,∞), T0 > t0, with x(t) 6= 0 for all t > T0. Let w(t) be defined by (1). Then, as
in the proof of Theorem 2.2, we derive (17), (20), (22), (23) and (24). Furthermore,
for every t > T0, we obtain

∫ t

T0

[w′(s)]2

w(s)
ds =

∫ t

T0

1
w(s)

(
w′(s)− %′(s)

%(s)
w(s)

)2

ds = +2
%′(t)
%(t)

w(t) − 2
%′(T0)
%(T0)

w(T0)

= +2
∫ t

T0

(
−%

′′(s)
%(s)

)
w(s) ds+

∫ t

T0

(%′(s)
%(s)

)2

w(s) ds

6
∫ t

T0

1
w(s)

(
w′(s)− %′(s)

%(s)
w(s)

)2

ds+ 2
%′(t)
%(t)

w(t)

= +2
∫ t

T0

(
−%

′′(s)
%(s)

)
w(s) ds+M

∫ t

T0

(%′(s)
%(s)

)2

s ds,

where M = sup
t>T0

w(t)/t. Accordingly, by taking into account (20), (22), (23) and

(24), we conclude that there exists a positive constant K such that

(26)
∫ t

T0

[w′(s)]2

w(s)
ds 6 K

∫ t

t0

(%′(s)
%(s)

)2

s ds, t > T0.

Finally, by (17) and (26), for t > T0 we have

∫ t

t0

[ϕ+(s)]2

s
ds =

∫ T0

t0

[ϕ+(s)]2

s
ds+

∫ t

T0

[ϕ+(s)]2

s
ds

6
∫ T0

t0

[ϕ+(s)]2

s
ds+M

∫ t

T0

[w′(s) + Ω(s)w(s)]2

w(s)
ds

6
∫ T0

t0

[ϕ+(s)]2

s
ds+ 2M

∫ t

T0

[w′(s)]2

w(s)
ds+ 2M

∫ t

T0

Ω2(s)w(s) ds

6
∫ T0

t0

[ϕ+(s)]2

s
ds+ 2MK

∫ t

t0

(%′(s)
%(s)

)2

s ds+2M2

∫ t

T0

sΩ2(s) ds,

which for all t > T0 implies

{∫ t

t0

(%′(s)
%(s)

)2

s ds
}−1∫ t

t0

[ϕ+(s)]2

s
ds 6

{∫ T0

t0

(%′(s)
%(s)

)2

s ds
}−1∫ T0

t0

[ϕ+(s)]2

s
ds

+2MK + 2M2

{∫ T0

t0

(%′(s)
%(s)

)2

s ds
}−1∫ t

T0

sΩ2(s) ds

and therefore by (H6) and (C4) gives the desired contradiction. �
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Remark 3. The condition (R) of Theorem 2.2 is stronger than the condition (R1)
required in Theorem 2.3, but on the other hand the assumption (C1) of Theorem 2.2
is weaker than (C4) required in the previous theorem.

Remark 4. Letting H(t, s) = t − s in Theorem 2.3, for the special case of the

differential equation (E2), we have the oscillation criteria of Philos [16, Theorem 2].

Example 3. Consider the differential equation

(E4) [t2x3(t)x′(t)]′ + [t3(t+ log t)−
1
2α sin t+ 3][|x(t)|α+3 + x4(t)] = 0, t > t0 > 1

where 0 < α < 1, λ− ν+ 1
2α < 0. We can take H(t, s) as in Example 2 and β = 1

2α.
We define %(t) = t+ log t, and observe that (R1) is fulfilled. Furthermore, for every
t > T > t0, we have

∫ t

T

H(t, s)%β(s)χ(s) ds =
∫ t

T

(t− s)2s sin s ds

= (t− T )2T cosT − t2 sinT + 2t(2T sinT + cos t+ 2 cosT )

− 6T cosT − 6 sin t+ 6 sinT − 3T 2 sinT

and consequently

lim sup
t→∞

1
H(t, T )

∫ t

T

H(t, s)%β(s)χ(s) ds = T cosT − sinT > T cosT − 2.

Thus, (C3) holds with ϕ(T ) = T cosT − 2, T > t0. We consider a number t1 such

that t1 > max
{
t0, 4

√
2
}
. Next, we choose an integer N such that 2N � − 1

4 � > t1, so
that for every integer n > N , we obtain

ϕ(T ) > T

2
√

2
for every T ∈

[
2n � − 1

4 � , 2n � + 1
4 �

]
.

Then, for n > N , we get

∫ 2n � + � /4
t0

ϕ2
+(s)
s

ds >
∫ 2n � + � /4

2n � − � /4
ϕ2

+(s)
s

ds > 1
8

∫ 2n � + � /4
2n � − � /4 s ds =

� 2n
8
,

and therefore,

lim sup
t→∞

1
log t

∫ t

t0

ϕ2
+(s)
s

ds > lim sup
n→∞

1
log(2n � + � /4)

∫ 2n � + � /4
t0

ϕ2
+(s)
s

ds

> lim
n→∞

� 2n
8 log(2n � + � /4)

= ∞.
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It is proved in [16, Remark 3] that the condition (C4) is satisfied if the following
condition holds

lim sup
t→∞

1
log t

∫ t

t0

ϕ2
+(s)
s

ds = ∞.

Consequently, all conditions of Theorem 2.3 are satisfied and the differential equa-
tion (E4) is oscillatory.
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