Article
Keywords:
primes in arithmetic progressions; squarefree integers; Artin’s constant
Summary:
In this paper we establish the distribution of prime numbers in a given arithmetic progression $p \equiv l \hspace{4.44443pt}(\@mod \; k)$ for which $ap + b$ is squarefree.
References:
[1] Tom M. Apostol:
Introduction to Analytic Number Theory. Springer-Verlag, 1976.
MR 0434929
[2] William Ellison and Fern Ellison:
Prime Numbers. John Wiley & Sons, 1985.
MR 0814687
[3] Ronald L. Graham, Donald E. Knuth and Oren Patashnik:
Concrete Mathematics: A Foundation for Computer Science. Addison-Wesley, second edition, 1994.
MR 1397498
[4] G. H. Hardy and E. M. Wright: An Introduction to the Theory of Numbers. Oxford at the Clarendon Press, fourth edition, 1960.
[5] Edmund Landau and Paul T. Bateman: Handbuch der Lehre von der Verteilung der Primzahlen. Chelsea, New York, second edition, 1974.
[6] N. S. Mendelsohn: Private communication to Jacek Fabrykowski. 1989.
[8] Karl Prachar:
Über die kleinste quadratfrei Zahl einer arithmetischen Reihe. Monatsh. Math. 3 (1958), 173–176.
MR 0092806
[9] John W. Wrench, Jr.:
Evaluation of Artin’s constant and the twin-prime constant. Math. Comp. 15 (1961), 396–398.
MR 0124305