Previous |  Up |  Next

Article

Keywords:
generalized ultrametric matrix; $ \mathcal U$ matrix; weighted graph; inverse $M$-matrix
Summary:
It is proved in this paper that special generalized ultrametric and special $\mathcal U$ matrices are, in a sense, extremal matrices in the boundary of the set of generalized ultrametric and $ \mathcal U$ matrices, respectively. Moreover, we present a new class of inverse $M$-matrices which generalizes the class of $\mathcal U$ matrices.
References:
[1] A. Berman and R. J. Plemmons: Nonnegative Matrices in the Mathematical Sciences. Academic, 1979; SIAM, 1994. MR 1298430
[2] C. R. Johnson: Inverse $M$-matrices. Linear Algebra Appl. 47 (1982), 159–216. MR 0672744 | Zbl 0488.15011
[3] C. Dellacherie, S. Martínez and J. S. Martín: Ultrametric matrices and induced Markov chains. Adv. in Appl. Math. 17 (1996), 169–183. DOI 10.1006/aama.1996.0009 | MR 1390573
[4] C. Dellacherie, S. Martínez and J. S. Martín: Description of the sub-Markov kernel associated to generalized ultrametric matrices: an algorithmic approach. Linear Algebra Appl. 318 (2000), 1–21. MR 1787220
[5] M. Fiedler: Some characterizations of symmmetric inverse $M$-matrices. Linear Algebra Appl. 275–276 (1998), 179–187. MR 1628388
[6] M. Fiedler: Special ultrametric matrices and graphs. SIAM J.  Matrix Anal. Appl. (electronic) 22 (2000), 106–113. DOI 10.1137/S0895479899350988 | MR 1779719 | Zbl 0967.15013
[7] M. Fiedler, C  R. Johnson and T. L Markham: Notes on inverse $M$-matrices. Linear Algebra Appl. 91 (1987), 75–81. DOI 10.1016/0024-3795(87)90061-9 | MR 0888480
[8] S. Martínez, G. Michon and J. S. Martín: Inverses of ultrametric matrices are of Stieltjes types. SIAM J. Matrix Anal. Appl. 15 (1994), 98–106. DOI 10.1137/S0895479891217011 | MR 1257619
[9] J. J. McDonald, R. Nabben, M. Neumann, H. Schneider and M. J. Tsatsomeros: Inverse tridiagonal $Z$-matrices. Linear and Multilinear Algebra 45 (1998), 75–97. MR 1665619
[10] J. J. McDonald, M. Neumann, H. Schneider and M. J. Tsatsomeros: Inverse $M$-matrix inequalities and generalized ultrametric matrices. Linear Algebra Appl. 220 (1995), 329–349. MR 1334583
[11] R. Nabben: A class of inverse $M$-matrices. Electron. J. Linear Algebra 7 (2000), 53–58. MR 1766201 | Zbl 0956.15012
[12] R. Nabben and R. S. Varga: A linear algebra proof that the inverses of strictly ultrametric matrix is a strictly diagonally dominant are of Stieljes types. SIAM J. Matrix Anal. Appl. 15 (1994), 107–113. DOI 10.1137/S0895479892228237 | MR 1257620
[13] R. Nabben and R. S. Varga: Generalized ultrametric matrices—a class of inverse $M$-matrices. Linear Algebra Appl. 220 (1995), 365–390. MR 1334586
[14] M. Neumann: A conjecture concerning the Hadamard product of inverse of $M$-matrices. Linear Algebra Appl. 285 (1995), 277–290. MR 1653539
[15] R. A.  Willoughby: The inverse $M$-matrix problem. Linear Algebra Appl. 18 (1977), 75–94. DOI 10.1016/0024-3795(77)90081-7 | MR 0472874 | Zbl 0355.15006
Partner of
EuDML logo