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Abstract. In this paper we establish the distribution of prime numbers in a given arith-
metic progression p ≡ l (mod k) for which ap+ b is squarefree.
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1. Introduction

This note is our answer to a question of N. S. Mendelsohn [6]: Are there infinitely

many prime numbers p ≡ 5 (mod 6) such that p+1 is squarefree? We prove that the
answer is “yes” by generalizing a theorem of Mirsky [7] that shows that the relative

density of the primes p for which p + 1 is squarefree is equal to Artin’s constant [9]

(1) A =
∏

q∈ �

(
1− 1

q(q − 1)

)
≈ 0.37395 58136 19202 28805 47280 54346,

where � = {2, 3, 5, 7, . . .} is the set of prime numbers. Mirsky also determined the
relative density of the primes p for which p + b is squarefree, where b is any fixed
integer, positive, negative, or zero. If b 6= 0, then that density is always a non-
zero rational multiple of A, the rational multiplier being constructed from the prime
divisors of b, in effect removing a finite number of factors from the product in (1).

If b = 0, then the relative density is 1, since every prime number is squarefree.
In the theorem in Section 4 below we generalize Mirsky’s theorem to the case in

which the primes p are constrained to lie in a residue class p ≡ l (mod k) relative
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to some modulus k > 0. We insist that the constants k and l be relatively prime;

Dirichlet’s theorem on primes in arithmetic progressions then guarantees that we
start with an infinite set of primes. At the same time we generalize somewhat
further by asking for squarefree integers having the form ap + b, a > 0, instead of
only the simpler form p + b. In every case, the relative density is either a rational
number or a rational multiple of Artin’s constant.

Mirsky’s proof requires more knowledge of the distribution of primes than is pro-
vided by the standard prime number theorem, since it is necessary to keep track of

residue classes. For this the proof uses the prime number theorem for arithmetic
progressions, and it uses it with an error term with uniformity in the O-constants.

The same theorem suffices for our more general result.
Setting (k, l, a, b) = (6, 5, 1, 1) in our theorem answers Mendelsohn’s question. Not

only are there infinitely many primes p ≡ 5 (mod 6) such that p + 1 is squarefree,
but the density of such primes in the set of all primes of the form 6j + 5 is 4A/5 ≈
0.29916465.
Except for 2 and 3, all primes are congruent to either 1 or 5 modulo 6, so it

is natural to ask the corresponding question for primes of the form 6j + 1. We
shall see that there are infinitely many primes p ≡ 1 (mod 6) such that p + 1 is
squarefree, and that this time the density of such primes in the set of all primes of
the form 6j + 1 is 6A/5 ≈ 0.44874698. This follows from our theorem upon setting
(k, l, a, b) = (6, 1, 1, 1).
As a further illustration of the results contained in our theorem, consider primes

in the four residue classes p = 10j + 1, p = 10j + 3, p = 10j + 7, and p = 10j + 9.
The theorem implies that the following approximate percentages of all primes in

those residue classes yield squarefree values for ap+ b when a = 3, for the first seven
positive values of b.

Class 3p + 1 3p + 2 3p + 3 3p + 4 3p + 5 3p + 6 3p + 7
p = 10j + 1 47.24% 75.58% 23.62% 94.47% 47.24% 47.24% 38.71%
p = 10j + 3 37.79% 94.47% 23.62% 94.47% 47.24% 37.79% 48.39%
p = 10j + 7 47.24% 94.47% 23.62% 75.58% 47.24% 47.24% 48.39%
p = 10j + 9 47.24% 94.47% 18.89% 94.47% 47.24% 47.24% 48.39%

Thus, for example, approximately 38.71% of all primes of the form p = 10j + 1 yield
squarefree values for 3p + 7. In terms of Artin’s constant A, the exact value in that
case is 4032A/3895.
The subject matter of this paper can be regarded as combining two lines of investi-

gation. One line is that premier problem in analytic number theory, the distribution

of primes in arithmetic progressions, a subject in which the first successes were
achieved by Dirichlet. The other line is the problem of the distribution of squarefree
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numbers in arithmetic progressions, a subject that goes back to Landau [5, §174],

and to which Prachar [8] and others have made significant contributions.

2. Heuristics

From a heuristic point of view it is not surprising that the “probability” that

p + 1 is squarefree for primes of the form p = 6j + 5 is 2/3 times the corresponding
probability for primes of the form p = 6j + 1. For a large prime p = 6j + 1, p + 1
is not divisible by 3, so there is no chance that the prime 3 can prevent p + 1 from
being squarefree. On the other hand, for a large prime p = 6j +5, p+1 is sure to be
divisible by 3, and it has a 1/3 chance of being divisible by a second 3 and thus not
being squarefree, but there is a 2/3 chance that that second 3 does not hit. Since the
other primes affect primes p of the forms 6j + 5 and 6j + 1 equally, the probability
that p + 1 is squarefree is 2/3 as great for primes of the form 6j + 5 as for primes of
the form 6j + 1.
Similar non-rigorous reasoning explains why the p + 1 case of Mirsky’s theorem

should involve Artin’s constant. We want to determine the probability that p + 1 is
squarefree, given that p is prime. Let p be a large prime, and let q be any prime that

is much smaller than
√

p. Under that assumption, it is reasonable to assume that p

is uniformly randomly distributed among the residue classes modulo q2, except that,

being itself a prime, p cannot be in any of the q residue classes modulo q2 that contain
numbers divisible by q. Thus there are q2−q = q(q−1) residue classes modulo q2 that

could contain p. For only one of these is p + 1 divisible by q2. Thus the probability
that p + 1 is not divisible by q2 is 1− 1/(q(q− 1)), and the probability that p + 1 is
squarefree is the product of that quantity over all primes q under consideration. As
p →∞, that becomes the product of 1−1/(q(q−1)) over all primes, which is Artin’s
constant as given in (1). Mirsky’s theorem shows that this heuristic conclusion is
actually correct.
The same kind of heuristic reasoning, though with many cases to be considered,

is what led us to the formula given in our theorem in Section 4. Since it is long and
based on the same ideas as those above, we omit that reasoning here.

3. Notation conventions

Except for x and y, which always denote positive real numbers, the lower case

Latin letters always denote integers. If a letter is restricted to representing positive
integers (as is usual for d, for instance), that will always be indicated in the notation

or mentioned in the course of a computation. The letters p and q will always denote
primes, but that too will be made explicit.
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We write � = {2, 3, 5, 7, . . .} for the set of prime numbers, log x for the natural

logarithm, logB x for (log x)B , and li(x) for the logarithmic integral. For our purposes
it does not matter what lower limit of integration is used in the definition of li(x),
and we choose

li(x) =
∫ x

2

dξ

log ξ
.

For integers k and l with k > 0, we write π(x; k, l) for the number of primes p less
than or equal to x that satisfy the congruence p ≡ l (mod k).
Also, ϕ(n) is the Euler totient function, µ(n) is the Möbius function, (u, v) is the

greatest common divisor function, and [u, v] is the least common multiple function.
We usually write u ⊥ v rather than (u, v) = 1 to indicate that u and v are relatively
prime [3, p. 115], putting the emphasis on the relation rather than on the function.

Even when b is negative, the quantity ap + b that appears in our theorem can

be negative only a finite number of times. The asymptotic estimate of how many
times ap + b is squarefree is not affected by those finitely many negative values, so it

does not matter whether we restrict the term “squarefree” to apply only to positive
numbers. We follow Landau [5, p. 567] in this matter, defining a squarefree number

as a positive integer not divisible by the square of any prime.

Both the statement and the proof of our theorem benefit from the use of an
abbreviation for what is, in effect, the world’s most general characteristic function.

We adopt the “bracket” version of Iverson’s notation [3, pp. 24–25] for this, writing
[B], where B is any Boolean-valued expression in any set of variables, to mean 1 if
B is true and 0 if B is false.

4. The Theorem

In the proof of our theorem below we use the prime number theorem for arithmetic

progressions in the form [2, Theorem 8.8] that states that for any constant H > 1
we have

(2) π(x; k, l) =
1

ϕ(k)
li(x) + O

(
x

logH x

)
as x →∞

whenever l ⊥ k. This estimate is uniform for 0 < k < logH x, which is sufficient for

our needs since we hold k, l, a, and b constant.

In order not to clutter the proof of our theorem inordinately, we find it convenient

to preface the theorem with the following lemma, which may be of some small interest
in its own right.
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Lemma. Let k, c and a be positive integers and let l and b be integers. Then the

system

u ≡ l (mod k),(3)

au + b ≡ 0 (mod c)

of congruences in the unknown u has a solution if and only if

(4) (ak, c) | al + b.

If (4) is satisfied, then the set of all integers u satisfying the system (3) coincides
with one of the residue classes modulo h = kc/(ak, c) = [k, c/(a, c)]. Furthermore,
if (4) is satisfied and l ⊥ k, then the members of that residue class are relatively

prime to the modulus h if and only if

(5) (a, c) = (b, c).

���������
. The calculation

[k, c/(a, c)] =
k · c/(a, c)
(k, c/(a, c))

= kc/(k(a, c), c)

= kc/((ka, kc), c)

= kc/(ka, (kc, c))

= kc/(ak, c)

shows that the two expressions for the modulus h are equal.

Now assume that the system has a solution, and call one solution u = kv + l. It
then follows that a(kv+l)+b ≡ 0 (mod c), so al+b ≡ −(ak)v (mod c), that is, al+b

is an integer linear combination of ak and c. But being such a linear combination is
equivalent to being a multiple of (ak, c).
Reversing the reasoning proves the converse. Assume that al + b is a multiple

of (ak, c). It is therefore an integer linear combination of ak and c, say al + b =
−v(ak) + wc, from which a(kv + l) + b ≡ 0 (mod c) follows. Letting u = kv + l, we
have both u ≡ l (mod k) and au + b ≡ 0 (mod c), as required.
Next, assume that (ak, c)|al + b. We need to show that the set of solutions of the

system is one of the residue classes modulo h.

Let u1 and u2 be two solutions of the system, say u1 = kv1+l and u2 = kv2+l. We
have a(kv1+l)+b ≡ 0 (mod c) and a(kv2+l)+b ≡ 0 (mod c), so a(kv1+l) ≡ a(kv2+l)
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(mod c), that is, ak(v1 − v2) ≡ 0 (mod c). Dividing through by (ak, c), we obtain
ak(ak, c)−1(v1−v2) ≡ 0 (mod c/(ak, c)). The factor ak/(ak, c) can now be cancelled
because it is relatively prime to the modulus c/(ak, c), and we conclude that v1 and
v2 are congruent modulo c/(ak, c), from which it follows that u1 and u2 are congruent

modulo kc/(ak, c). Thus all solutions to the system of congruences are in the same
residue class modulo kc/(ak, c), which is h. It is even easier to see that if u1 is a

solution of the system and u2 is in the same residue class modulo h, then u2 is also a
solution of the system. Thus the set of all solutions coincides with one of the residue

classes modulo h, as claimed.

All that remains is to prove the condition for relative primality. Assuming that
an integer u satisfying the system (3) exists and that l ⊥ k, we must show that

u ⊥ h if and only if (a, c) = (b, c). We will prove a stronger statement, namely, that
(u, h) = (b, c)/(a, c).
Since l ⊥ k and u ≡ l (mod k), we have u ⊥ k. Next, writing the congruence

au + b ≡ 0 (mod c) in the form a(a, c)−1
u + b(a, c)−1 ≡ 0 (mod c/(a, c)) makes the

coefficient a/(a, c) relatively prime to the modulus c/(a, c), so there exists an integer
z that is also relatively prime to c/(a, c) and that is a multiplicative inverse of a/(a, c)
modulo c/(a, c). Multiplying by z shows that u ≡ −bz/(a, c) (mod c/(a, c)). With
those remarks in hand, we are now ready for the calculation

(u, h) = (u, [k, c/(a, c)])

= [(u, k), (u, c/(a, c))]

= [1, (u, c/(a, c))]

= (u, c/(a, c))

= (bz/(a, c), c/(a, c))

= (b/(a, c), c/(a, c))

= (b, c)/(a, c),

where in the second step we have used the theorem that greatest common divisor
and least common multiple are distributive with respect to each other.

That completes the proof of the lemma. �

Theorem. Let k, l, a and b be integers with l ⊥ k, k > 0, and a > 0. Let
S = Sk,l,a,b = {p ∈ � : p ≡ l (mod k) and ap + b is positive and squarefree}, and let
S(x) = Sk,l,a,b(x) be the number of elements of S that are less than or equal to x.

Then for any constant B > 1 we have

(6) S(x) = K li(x) + O(x/ logB x) as x →∞,
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where the constant K is

(7) K = Kk,l,a,b =
1

ϕ(k)

∏

q∈ �

(
1− κq

q(q − 1)

)
,

where κq = κq(k, l, a, b) is defined for prime q by

(8) κq =





[q  b] if q  ka,

(q − 1)[q|al + b] if q ‖ k and q  a,

q[q ‖ b] if q  k and q ‖ a,

q(q − 1)[q2 | al + b] if q2 | ka.

Remark. The infinite product for K is convergent, so K is finite in all cases, and
is zero if and only if there is a zero factor in the infinite product. If K 6= 0, then S is
an infinite set. If K = 0, then S has at most one element. There are two ways that
K = 0 can happen, either by having (ka, al + b) not squarefree, in which case S = ∅,
or by having k odd and a ≡ b ≡ 2 (mod 4), in which case either S = ∅ or S = {2}.
���������

. Throughout this proof it is to be understood that the letters p and

q denote primes, that d denotes a positive integer, and that x and y are large real
numbers.

The proof proceeds in five steps.

We begin by letting γ denote the characteristic function of the (positive) squarefree
integers,

γ(n) =

{
1 if n is squarefree,

0 otherwise,

where all integers n are considered, not only the positive integers. For positive values

of n, γ(n) can be expressed in terms of the Möbius function µ by the formula

γ(n) =
∑

d2|n
µ(d),

and we have γ(n) = 0 when n 6 0. Putting these together, we have

(9) γ(n) =
∑

d

µ(d)[d2|n > 0],
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where d2 | n > 0 means that we have both the relations d2 | n and n > 0. We now
use (9) and an interchange of order of summation to calculate

S(x) =
∑

p6x

[p ∈ S]

=
∑

p6x

[p ≡ l (mod k)]γ(ap + b)

=
∑

p6x

[p ≡ l (mod k)]
∑

d

µ(d)[d2 | ap + b > 0]

=
∑

d

µ(d)
∑

p6x

[p ≡ l (mod k)][d2 | ap + b > 0]

=
∑

d

µ(d)
∑

p6x

[p ≡ l (mod k)][d2 | ap + b][ap + b > 0].

Therefore

(10) S(x) =
∑

d

µ(d)P (x, d),

where P (x, d) = Pk,l,a,b(x, d) counts the number of primes p 6 x that satisfy the
two congruences p ≡ l (mod k) and ap + b ≡ 0 (mod d2) and also the condition
ap + b > 0.
Motivated by the lemma (with d2 in place of c), we begin the second step of

the proof by defining three functions M(d) = Mk,l,a,b(d), D(d) = Dk,l,a,b(d), and
E(d) = Ek,l,a,b(d) as follows:

M(d) = kd2/(ak, d2),(11)

D(d) = ϕ(kd2/(ak, d2)),(12)

E(d) = [(ak, d2)|al + b][(a, d2) = (b, d2)].(13)

(The modulus is M(d), li(x) gets divided by D(d), and E(d) checks for existence.)
According to the lemma, if E(d) = 1, then the system of congruences p ≡ l (mod k)
and ap + b ≡ 0 (mod d2) involved in the definition of P (x, d) has solutions, and the
set of all of those solutions coincides with one of the D(d) residue classes modulo
M(d) that are relatively prime to M(d). Therefore the prime number theorem for
arithmetic progressions, equation (2), implies that

P (x, d) =
1

D(d)
li(x) + O(x/ logH x),

uniformly in d, where H is any constant greater than 1. (We will eventually choose
H = 2B.) On the other hand, if E(d) = 0, then that system of congruences either
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has no solutions or has all of its solutions in a residue class that is not relatively

prime to M(d), and therefore

0 6 P (x, d) 6 1.

In either case we have

(14) P (x, d) =
E(d)
D(d)

li(x) + O(x/ logH x) as x →∞,

and the constants implicit in the O-symbol are independent of d.

For the third step of the proof, we split S(x) into two parts and estimate each
part separately. We write S(x) = s1(x, y) + s2(x, y) where

s1(x, y) =
∑

d6y

µ(d)P (x, d)

and

s2(x, y) =
∑

d>y

µ(d)P (x, d).

(We will later choose y = logB x.)

It is easy to show that s2(x, y) = O(x/y). Clearly P (x, d) 6 max((ax + b)/d2, 0),
so P (x, d) = O(x/d2) where the constants implicit in the O-symbol hold uniformly
in x and d. Therefore

(15) |s2(x, y)| 6
∑

d>y

P (x, d) = O

(∑

d>y

x

d2

)
= O(x/y).

We next use (14) to approximate s1(x, y), obtaining

s1(x, y) =
∑

d6y

µ(d)
{

E(d)
D(d)

li(x) + O(x/ logH x)
}

(16)

=
∑

d6y

µ(d)E(d)
D(d)

li(x) + O

(∑

d6y

x

logH x

)

=
∞∑

d=1

µ(d)E(d)
D(d)

li(x)−
∑

d>y

µ(d)E(d)
D(d)

li(x) + O(xy/ logH x)

= K li(x) + O

(∑

d>y

log log d

d2

)
li(x) + O(xy/ logH x),
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where we have written

(17) K =
∞∑

d=1

µ(d)E(d)
D(d)

for short, and where we have used the theorem [4, Theorem 328] that ϕ(d) is greater
than some positive constant multiple of d/ log log d to deduce that D(d) is greater
than some positive constant multiple of d2/ log log d. We now use the asymptotic
formulas ∑

d>y

log log d

d2
∼

∫ ∞

y

log log ξ

ξ2
dξ ∼ log log y

y
as y →∞

to conclude that

s1(x, y) = K li(x) + O

(
log log y

y

)
li(x) + O(xy/ logH x)(18)

= K li(x) + O

(
log log y

y
· x

log x

)
+ O(xy/ logH x)

= K li(x) + O(x/y) + O(xy/ logH x),

as long as log log y = O(log x) as x →∞.
Combining (15) and (18), we obtain

S(x) = K li(x) + O(xy/ logH x) + O(x/y),

assuming that log log y = O(log x). When y = logB x and H = 2B, this becomes

(19) S(x) = K li(x) + O(x/ logB x) as x →∞.

That is the conclusion of our theorem, except that the constant K still needs to be
expressed as the infinite product described in the theorem.

For the fourth step of the proof, we show that K can be rewritten in the form

(20) K =
1

ϕ(k)

∏

q

(
1− ϕ(k)E(q)

D(q)

)
.

We do this by showing that multiplying ϕ(k) times the individual terms of the infinite
series for K yields a quantity, namely ϕ(k)µ(d)E(d)/D(d), that is a multiplicative
function of d. To see that this function is multiplicative, consider the three factors
µ(d), E(d), and D(d)/ϕ(k) separately. That µ(d) is multiplicative is a standard
theorem of elementary number theory, and the multiplicativity of E(d) follows easily
upon considering each of the factors on the right hand side of (13).
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To see that D(d)/ϕ(k) is a multiplicative function of d, we begin with the calcu-
lation

D(d) = ϕ([k, d2/(a, d2)])

= ϕ(kd2/(ka, d2))

= ϕ(k)ϕ(d2/(ka, d2))
(k, d2/(a, d2))

ϕ((k, d2/(ka, d2)))
,

where the last step follows from the formula ϕ(mn) = ϕ(m)ϕ(n)(m, n)/ϕ((m, n))
(see [1, page 28, Theorem 2.5 (b)]). Therefore we have

D(d)
ϕ(k)

=
(k, d2/(a, d2)) · ϕ(d2/(ka, d2))

ϕ((k, d2/(ka, d2)))
.

From this representation it is fairly easy to verify that D(d)/ϕ(k) is multiplicative.
We begin by noting that, for any fixed integer t > 0, the greatest common divisor
function Gt(d) = (t, d) is multiplicative in d. It is then a routine calculation to

show first that the functions (k, d2/(a, d2)) and (k, d2/(ka, d2)) are multiplicative,
and then that ϕ((k, d2/(a, d2))) and ϕ((k, d2/(ka, d2))) are also multiplicative.
Since products and quotients of multiplicative functions are multiplicative, it then

follows that the infinite series

ϕ(k)K =
∞∑

d=1

ϕ(k)µ(d)E(d)
D(d)

has the Euler product representation

ϕ(k)K =
∏

q

(
1 +

ϕ(k)µ(q)E(q)
D(q)

+
ϕ(k)µ(q2)E(q2)

D(q2)
+ . . .

)

=
∏

q

(
1− ϕ(k)E(q)

D(q)

)
.

and that proves (20).

For the fifth and final step of the proof, it remains only to verify the formulas

given in the theorem for κq when q is prime. We need to show that the quantity

q(q − 1)
ϕ(k)E(q)

D(q)
=

ϕ(k)ϕ(q2)E(q)
D(q)

is equal to the values claimed for κq in all four cases.
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In Case I we have q  ka, and therefore

ϕ(k)ϕ(q2)E(q)
D(q)

=
ϕ(k)ϕ(q2)[(ak, q2)|al + b][(a, q2) = (b, q2)]

ϕ(kq2/(ak, q2))

=
ϕ(k)ϕ(q2)[1 | al + b][1 = (b, q2)]

ϕ(kq2)

=
ϕ(k)ϕ(q2)[q  b]

ϕ(k)ϕ(q2)
= [q  b],

as required.
In Case II we have q ‖ k and q  a, and therefore

ϕ(k)ϕ(q2)E(q)
D(q)

=
ϕ(k)ϕ(q2)[(ak, q2)|al + b][(a, q2) = (b, q2)]

ϕ(kq2/(ak, q2))

=
ϕ(k)ϕ(q2)[q|al + b][1 = (b, q2)]

ϕ(kq2/q)

=
ϕ((k/q)q)ϕ(q2)[q|al + b][q  b]

ϕ((k/q)q2)

=
ϕ(k/q)ϕ(q)ϕ(q2)[q|al + b]

ϕ(k/q)ϕ(q2)
= (q − 1)[q|al + b],

as required. We were able to drop the factor [q  b] because q  b is a consequence of
q | al + b. Reason: If we had both q | al + b and q | b, then it would follow that q | al

and then that q | l, contradicting the assumption that l ⊥ k.
In Case III we have q  k and q ‖ a, and therefore

ϕ(k)ϕ(q2)E(q)
D(q)

=
ϕ(k)ϕ(q2)[(ak, q2)|al + b][(a, q2) = (b, q2)]

ϕ(kq2/(ak, q2))

=
ϕ(k)ϕ(q2)[q | al + b][q = (b, q2)]

ϕ(kq2/q)

=
ϕ(k)ϕ(q2)[q|al + b][q‖b]

ϕ(kq)

=
ϕ(k)ϕ(q2)[q‖b]

ϕ(k)ϕ(q)
= q[q‖b],

as required. We were able to drop the factor [q | al + b] because q | al + b is a
consequence of q ‖ b.
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In Case IV we have q2 | ka, and therefore

ϕ(k)ϕ(q2)E(q)
D(q)

=
ϕ(k)ϕ(q2)[(ak, q2)|al + b][(a, q2) = (b, q2)]

ϕ(kq2/(ak, q2))

=
ϕ(k)ϕ(q2)[q2|al + b][(a, q2) = (b, q2)]

ϕ(kq2/q2)

=
ϕ(k)ϕ(q2)[q2|al + b]

ϕ(k)
= q(q − 1)[q2|al + b],

as required. We were able to drop the factor [(a, q2) = (b, q2)] because (a, q2) = (b, q2)
is a consequence of q2 | al+b. Reason: There are only three possible values for (a, q2),
namely, 1, q, and q2, as covered in the following three cases. In each case we use the

hypothesis that al ≡ −b (mod q2).
(a) If (a, q2) = 1, then q  a, so q | k, so q  l (since l ⊥ k), so q  al, so q  b, and

therefore (b, q2) = 1.
(b) If (a, q2) = q, then q ‖ a, so q | k, so q  l (since l ⊥ k), so q ‖ al, so q ‖ b, and

therefore (b, q2) = q.
(c) If (a, q2) = q2, then q2 | a, so q2 | b, and therefore (b, q2) = q2.

That completes the proof of the theorem. �
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