[2] G. Chartrand, D. Erwin, M. Raines and P. Zhang:
The decomposition dimension of graphs. Graphs and Combin. 17 (2001), 599–605.
DOI 10.1007/PL00007252 |
MR 1876570
[3] G. Chartrand and L. Lesniak:
Graphs & Digraphs, third edition. Chapman & Hall, New York, 1996.
MR 1408678
[5] A. Küngen and D. B. West: Decomposition dimension of graphs and a union-free family of sets. Preprint.
[7] M. A. Johnson: Browsable structure-activity datasets. Preprint.
[8] F. Harary and R. A. Melter:
On the metric dimension of a graph. Ars Combin. 2 (1976), 191–195.
MR 0457289
[9] B. L. Hulme, A. W. Shiver and P. J. Slater: FIRE: A subroutine for fire protection network analysis. SAND 81-1261, Sandia National Laboratories, Albuquerque, 1981.
[10] B. L. Hulme, A. W. Shiver and P. J. Slater: Computing minimum cost fire protection. SAND 82-0809, Sandia National Laboratories, Albuquerque, 1982.
[11] B. L. Hulme, A. W. Shiver and P. J. Slater:
A Boolean algebraic analysis of fire protection. Annals of Discrete Mathematics, Algebraic Structure in Operations Research, 1984, pp. 215–228.
MR 0780023
[13] P. J. Slater:
Dominating and reference sets in graphs. J. Math. Phys. Sci. 22 (1988), 445–455.
MR 0966610
[14] V. Saenpholphat and P. Zhang:
Connected resolving decompositions in graphs. Math. Bohem. 128 (2003), 121–136.
MR 1995567