Previous |  Up |  Next

Article

Keywords:
locally A-pseudoconvex algebra; locally m-pseudoconvex algebra
Summary:
Let $(A, T )$ be a locally A-pseudoconvex algebra over $\mathbb{R}$ or $\mathbb{C}$. We define a new topology $m (T)$ on $A$ which is the weakest among all m-pseudoconvex topologies on $A$ stronger than $T$. We describe a family of non-homogeneous seminorms on $A$ which defines the topology $m(T)$.
References:
[1] M. Abel: Gelfand-Mazur Algebras, Topological Vector Spaces, Algebras and Related Areas (Hamilton, ON). Pitman Research Notes in Math. Series  316, Longman Scientific & Technical, London, 1994, pp. 116–129. MR 1319378
[2] M. Abel and A. Kokk: Locally pseudoconvex Gelfand-Mazur algebras. Eesti Tead. Akad. Toimetised Füüs.-Mat. 37, 377–386. (Russian) MR 0985621
[3] J. Arhippainen: On functional representation of uniformly A-convex algebras. Math. Japon. 46 (1997), 509–515. MR 1487302 | Zbl 0896.46036
[4] J. Arhippainen: On functional representation of commutative locally A-convex algebras. Rocky Mountain J.  Math. 30 (2000), 777–794. DOI 10.1216/rmjm/1021477242 | MR 1797813 | Zbl 1052.46037
[5] A. C. Cochran: Topological algebras and Mackey topologies. Proc. Amer. Math. Soc. 30 (1971), 115–119. DOI 10.1090/S0002-9939-1971-0291807-4 | MR 0291807 | Zbl 0219.46036
[6] A. C. Cochran: Representation of A-convex algebras. Proc. Amer. Math. Soc. 41 (1973), 473–479. MR 0333735 | Zbl 0272.46029
[7] A. C. Cochran, R.  Keown and C. R. Williams: On class of topological algebras. Pacific J.  Math. 34 (1970), 17–25. DOI 10.2140/pjm.1970.34.17 | MR 0273399
[8] T. Husain: The Open Mapping and Closed Graph Theorems in Topological Vector Spaces. Clarendon Press, Oxford, 1965. MR 0178331 | Zbl 0124.06301
[9] L. Oubbi: Topologies m-convexes dans les algebres A-convexes. Rend. Circ. Mat. Palermo XLI (1992), 397–406. MR 1230587 | Zbl 0798.46043
[10] L. Oubbi: Representation of locally convex algebras. Rev. Mat. Univ. Complut. Madrid 35 (1994), 233–244. MR 1297513 | Zbl 0820.46047
[11] M. Oudadess: Unité et semi-normes dans les algèbres localement convexes. Rev. Colombiana Mat. 16 (1982), 141–150. MR 0685249 | Zbl 0565.46028
[12] T. W. Palmer: Banach Algebras and the General Theory of $^\ast $-Algebras. Cambridge Univ. Press, New York, 1994. Zbl 0809.46052
[13] L. Waelbroeck: Topological Vector Spaces and Algebras. Lecture Notes in Math.  230. Springer-Verlag, Berlin-New York, 1971. MR 0467234
Partner of
EuDML logo