Article
Keywords:
locally A-pseudoconvex algebra; locally m-pseudoconvex algebra
Summary:
Let $(A, T )$ be a locally A-pseudoconvex algebra over $\mathbb{R}$ or $\mathbb{C}$. We define a new topology $m (T)$ on $A$ which is the weakest among all m-pseudoconvex topologies on $A$ stronger than $T$. We describe a family of non-homogeneous seminorms on $A$ which defines the topology $m(T)$.
References:
[1] M. Abel:
Gelfand-Mazur Algebras, Topological Vector Spaces, Algebras and Related Areas (Hamilton, ON). Pitman Research Notes in Math. Series 316, Longman Scientific & Technical, London, 1994, pp. 116–129.
MR 1319378
[2] M. Abel and A. Kokk:
Locally pseudoconvex Gelfand-Mazur algebras. Eesti Tead. Akad. Toimetised Füüs.-Mat. 37, 377–386. (Russian)
MR 0985621
[3] J. Arhippainen:
On functional representation of uniformly A-convex algebras. Math. Japon. 46 (1997), 509–515.
MR 1487302 |
Zbl 0896.46036
[6] A. C. Cochran:
Representation of A-convex algebras. Proc. Amer. Math. Soc. 41 (1973), 473–479.
MR 0333735 |
Zbl 0272.46029
[8] T. Husain:
The Open Mapping and Closed Graph Theorems in Topological Vector Spaces. Clarendon Press, Oxford, 1965.
MR 0178331 |
Zbl 0124.06301
[9] L. Oubbi:
Topologies m-convexes dans les algebres A-convexes. Rend. Circ. Mat. Palermo XLI (1992), 397–406.
MR 1230587 |
Zbl 0798.46043
[10] L. Oubbi:
Representation of locally convex algebras. Rev. Mat. Univ. Complut. Madrid 35 (1994), 233–244.
MR 1297513 |
Zbl 0820.46047
[11] M. Oudadess:
Unité et semi-normes dans les algèbres localement convexes. Rev. Colombiana Mat. 16 (1982), 141–150.
MR 0685249 |
Zbl 0565.46028
[12] T. W. Palmer:
Banach Algebras and the General Theory of $^\ast $-Algebras. Cambridge Univ. Press, New York, 1994.
Zbl 0809.46052
[13] L. Waelbroeck:
Topological Vector Spaces and Algebras. Lecture Notes in Math. 230. Springer-Verlag, Berlin-New York, 1971.
MR 0467234