Previous |  Up |  Next

Article

Keywords:
module; inverse polynomial module; injective module; projective modules
Summary:
We study whether the projective and injective properties of left $R$-modules can be implied to the special kind of left $R[x]$-modules, especially to the case of inverse polynomial modules and Laurent polynomial modules.
References:
[1] A. S.  McKerrow: On the injective dimension of modules of power series. Quart. J.  Math. Oxford 25 (1974), 359–368. DOI 10.1093/qmath/25.1.359 | MR 0371881 | Zbl 0302.16027
[2] L.  Melkersson: Content and inverse polynomials on artinian modules. Comm. Algebra 26 (1998), 1141–1145. DOI 10.1080/00927879808826189 | MR 1612204 | Zbl 0931.13005
[3] D. G.  Northcott: Injective envelopes and inverse polynomials. London Math. Soc. 3 (1974), 290–296. DOI 10.1112/jlms/s2-8.2.290 | MR 0360555 | Zbl 0284.13012
[4] S.  Park: Inverse ploynomials and injective covers. Comm. Algebra 21 (1993), 4599–4613. DOI 10.1080/00927879308824819 | MR 1242851
[5] S.  Park: The Macaulay-Northcott functor. Arch. Math. (Basel) 63 (1994), 225–230. DOI 10.1007/BF01189824 | MR 1287251 | Zbl 0804.18009
[6] S.  Park: Gorenstein rings and inverse polynomials. Comm. Algebra 28 (2000), 785–789. DOI 10.1080/00927870008826859 | MR 1736762 | Zbl 0957.13005
[7] S.  Park: Left global dimensions and inverse polynomil modules. Internat. J.  Math. Math. Sci. 24 (2000), 437–440. DOI 10.1155/S0161171200004129 | MR 1781510
[8] S.  Park: The general structure of inverse polynomial modules. Czechoslovak Math.  J. 51(126) (2001), 343–349. DOI 10.1023/A:1013798914813 | MR 1844314 | Zbl 0983.16006
Partner of
EuDML logo