[1] J. J. Alibert and B. Dacorogna:
An example of a quasiconvex function that is not polyconvex in two dimensions. Arch. Rational Mech. Anal. 117 (1992), 155–166.
DOI 10.1007/BF00387763 |
MR 1145109
[2] G. Aubert:
On a counterexample of a rank 1 convex function which is not polyconvex in the case $N=2$. Proc. Roy. Soc. Edinburgh 106A (1987), 237–240.
MR 0906209
[4] G. Aubert and R. Tahraoui:
Sur la faible fermeture de certains ensembles de contrainte en élasticité nonlinéaire plane. C. R. Acad. Sci. Paris 290 (1980), 537–540.
MR 0573804
[5] G. Aubert and R. Tahraoui:
Sur la faible fermeture de certains ensembles de contrainte en élasticite nonlinéaire plane. Arch. Rational Mech. Anal. 97 (1987), 33–58.
DOI 10.1007/BF00279845 |
MR 0856308
[6] J. M. Ball:
Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 63 (1977), 337–403.
MR 0475169 |
Zbl 0368.73040
[8] B. Dacorogna and H. Koshigoe:
On the different notions of convexity for rotationally invariant functions. Ann. Fac. Sci. Toulouse II (1993), 163–184.
MR 1253387
[9] B. Dacorogna and P. Marcellini:
A counterexample in the vectorial calculus of variations. In: Material Instabilities in Continuum Mechanics, J. M. Ball (ed.), Clarendon Press, Oxford, 1985/1986, pp. 77–83.
MR 0970519
[10] B. Dacorogna and P. Marcellini:
Implicit Partial Differential Equations. Birkhäuser, Basel, 1999.
MR 1702252
[11] C. B. Morrey, Jr.:
Multiple Integrals in the Calculus of Variations. Springer, New York, 1966.
MR 0202511 |
Zbl 0142.38701
[12] P. Rosakis:
Characterization of convex isotropic functions. J. Elasticity 49 (1998), 257–267.
MR 1633494 |
Zbl 0906.73018
[13] M. Šilhavý:
The Mechanics and Thermodynamics of Continuous Media. Springer, Berlin, 1997.
MR 1423807
[14] M. Šilhavý:
On isotropic rank 1 convex functions. Proc. Roy. Soc. Edinburgh 129A (1999), 1081–1105.
MR 1719253
[15] M. Šilhavý:
Convexity conditions for rotationally invariant functions in two dimensions. In: Applied Nonlinear Analysis, A. Sequeira et al. (ed.), Kluwer Academic, New York, 1999, pp. 513–530.
MR 1727470
[17] M. Šilhavý:
Monotonicity of rotationally invariant convex and rank 1 convex functions. Proc. Royal Soc. Edinburgh 132A (2002), 419–435.
MR 1899830
[18] M. Šilhavý:
Rank 1 Convex hulls of isotropic functions in dimension 2 by 2. Math. Bohem. 126 (2001), 521–529.
MR 1844288
[19] M. Šilhavý:
An $O(n)$ invariant rank 1 convex function that is not polyconvex. Theor. Appl. Mech. 28–29 (2002), 325–336.
MR 2025155 |
Zbl 1055.26006