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Abstract. We study whether the projective and injective properties of left R-modules
can be implied to the special kind of left R[x]-modules, especially to the case of inverse
polynomial modules and Laurent polynomial modules.
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1. Introduction

Northcott [3] and McKerrow in [1] proved that if R is a left Noetherian ring and

E is an injective left R-module, then E[x−1] is an injective left R[x]-module. In [5]
Park showed that P [x−1] is not a projective left R[x]-module while P [x] is a projective
left R[x]-module for a projective left R-module P . In this paper we study whether
the projective and injective properties of left R-modules can be implied to the special

kind of left R[x]-modules. We prove that for any non zero left R-module E, that
the Laurent polynomial module E[x, x−1] is not an injective left R[x]-module and
E[x−1

1 , x−2
2 , . . .] is not an injective left R[x1, x2, . . .]-module, in general. We also give

another proof of Northcott’s and McKerrow’s result by using locally nilpotent. And

then we prove that for a projective left R-module P , the inverse power series module
P [[x−1]] and the Laurent polynomial module P [x, x−1] are not projective left R[x]-
module. Inverse polynomial modules were studied in [2], [4], [5] and recently in [6],
[7], [8].
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Definition 1.1. Let R be a ring andM a left R-module, thenM [x−1] is the left
R[x]-module such that

x(m0 + m1x
−1 + . . . + mnx−n) = m1 + m2x

−1 + . . . + mnx−n+1

and

r(m0 + m1x
−1 + . . . + mnx−n) = rm0 + rm1x

−1 + . . . + rmnx−n

where r ∈ R.

Similarly, we can also define M [[x−1]], M [x, x−1], M [x, x−1]], and also M [[x, x−1]
as left R[x]-modules where, for example, M [[x, x−1] is the set of Laurent series in x

with coefficients in M , i.e. the set of all formal sums
∑

k>n0

mkxk with n0 any element

of � ( � is the set of all integers).

Lemma 1.2. Let M be a left R-module. Then

HomR(R[x], M) ∼= M [[x−1]]

as left R[x]-modules.

���������
. Define ϕ : HomR(R[x], M) → M [[x−1]] by

ϕ(f) = f(1) + f(x)x−1 + f(x2)x−2 + . . . .

Then ϕ is an isomorphism. �

We note that if E is an injective left R-module, then HomR(R[x], E) is an injective
left R[x]-module so by the above Lemma 1.2, E[[x−1]] is an injective left R[x]-module.

2. Injective properties of R[x]-modules

Definition 2.1. Given any module M and f ∈ End(M) we say that f is locally

nilpotent on M if for every x ∈ M , there exist n > 1 such that fn(x) = 0.

The following Lemma 2.2 is originally due to Matlis and Gabriel.
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Lemma 2.2. If R is a left Noetherian ring, E is an injective left R-module,

and f ∈ End(E) is such that E is an essential extension of Ker(f), then f is locally

nilpotent on E.

���������
. LetK be the kernel of f and E an essential extension ofK. Consider the

direct sumK⊕K⊕. . . of countable number ofK’s. Choose (a1, a2, . . .) ∈ E⊕E⊕. . .,

then ai = 0 for all i > n for some n. Since E is an essential extension of K, choose
r1 ∈ R such that r1a1 ∈ K. Then choose r2 ∈ R such that r2(r1a2) ∈ K and so on.

Finally, choose rk ∈ R such that rk(rk−1 . . . r2r1ak) ∈ K. Then

(rnrn−1 . . . r2r1)(a1, a2, . . . , an, 0, 0, . . .) ∈ K ⊕K ⊕ . . . .

Thus E⊕E⊕ . . . is an essential extension of K⊕K⊕ . . .. Since R is left Noetherian,
E ⊕ E ⊕ . . . is injective, so it is an injective envelope of K ⊕K ⊕ . . .. If M ⊂ E1,

M ⊂ E2 are injective envelopes of M and ϕ : E1 → E2 is the identity on M then
ϕ is an isomorphism. So define the map

ϕ : E ⊕E ⊕ . . . −→ E ⊕E ⊕ . . .

(x1, x2, . . .) 7−→ (x1, x2 − f(x1), x3 − f(x2), . . .).

Then ϕ is a homomorphism, and ϕ|K⊕K⊕... = idK⊕K⊕.... So ϕ is an automorphism

of E⊕E⊕ . . . and in particular ϕ is onto. Let x ∈ E and consider (x, 0, 0, . . .). Then
ϕ(x1, x2, x3, . . .) = (x, 0, 0, . . .) for some (x1, x2, x3, . . .) ∈ E ⊕E ⊕ . . .. Then

x1 = x,

x2 − f(x1) = 0,

x3 − f(x2) = 0,

and so on. So xn = fn−1(x) for all n > 2. But for some n, xn+1 = 0, i.e., fn(x) = 0.
Therefore, f is locally nilpotent on E. �

The following Theorem 2.3 is originally due to Northcott and McKerrow. We give

another proof by using locally nilpotent.

Theorem 2.3. Let R be a commutative Noetherian ring and E an injective left

R-module. Then E[x−1] is an injective left R[x]-module.
���������

. Let E be an injective left R-module. Then

HomR(R[x], E) ∼= E[[x−1]]
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is an injective left R[x]-module. Define ϕ : E[[x−1]] → E[[x−1]] by

ϕ(f) = xf

for f ∈ E[[x−1]], then ϕ is not locally nilpotent on E[[x−1]]. So E[[x−1]] is not
an essential extension of Ker(ϕ). Let E be an injective envelope of Ker(ϕ), then
Ker(ϕ) ⊂ E ⊂ E[[x−1]]. Then ϕ : E → E defined by

ϕ(f) = xf

for f ∈ E is locally nilpotent on E. So E ⊂ E[x−1]. But E[x−1] is an essential
extention of Ker(ϕ), so that E[x−1] is an esssestial extention of E. Therefore, E =
E[x−1]. Hence, E[x−1] is an injective left R[x]-module. �

We note that E[x] is not an injective left R[x]-module if E 6= 0.

Theorem 2.4. For any non zero left R-module E, E[x, x−1] is not an injective
left R[x]-module.
���������

. Consider the following diagram

0 // (1 + x) //i

��
h

R[x]

E[x, x−1]

defined by h(1+x) = e, e ∈ E; here i is the inclusion map. Then we can not complete
the above diagram as a commutative diagram. �

Theorem 2.5. Let E be an injective left R-module. Then E[x−1
1 , x−2

2 , . . .] is
not an injective left R[x1, x2, . . .]-module, in general.
���������

. We give a counterexample for the case of E = � (the set of all rational
numbers), and R = � (the set of all integers). Let I = (x1, x2, x3 . . .) and J be an

ideal generated by xixj , for i 6= j, and x3
i , for all i. Consider the following diagram

0 // I //i

��

Q[x1, x2, . . .]

I/J

��
ϕ

Q[x−1, x−2, . . .]
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defined by ϕ : I/J −→ � [x−1
1 , x−2

2 , . . .], ϕ(x2
i + J) = 1 and ϕ(xi + J) = x−1

i , and

i : I −→ � [x1 , x2, . . .] the inclusion map. Then we can not complete the above
diagram to a commutative diagram.

3. Projective properties of R[x]-modules

Theorem 3.1. P [[x−1]] is not a projective left R[x]-module for P a projective

left R-module.
���������

. Let P be a left R-module and P [[x, x−1]], P [[x−1]] be R[x]-modules,
then f : P [[x, x−1]] → P [[x−1]] defined by

ϕ(. . . + a3x
3 + a2x

2 + a1x + a0 + b1x
−1 + b2x

−2 + b3x
−3 + . . .)

= a0 + b1x
−1 + b2x

−2 + b3x
−3 + . . .

is a surjective R[x]-linear map. If P [[x−1]] is an projective left R[x]-module, then we
should be able to complete the following diagram as a commutative diagram by an

R[x]-linear map g.

R[x]P [[x−1]]

��
idP [[x−1]]

g

R[x]P [[x, x−1]] //ϕ
R[x]P [[x−1]] // 0

Let a0 ∈ P [[x−1]] and a0 6= 0. Then g(a0) = a0 + a1x + a2x
2 + a3x

3 + . . ..
But xg(a0) = a0x + a1x

2 + a2x
3 + a3x

4 + . . . 6= 0 and g(xa0) = g(0) = 0. So,
g(xa0) 6= xg(a0). Therefore, g is not an R[x]-linear map. Hence, P [[x−1]] is not a
projective left R[x]-module. �

Theorem 3.2. P [x, x−1] is not a projective left R[x]-module for P a projective

left R-module.
���������

. We show that R[x, x−1] is not a projective left R[x]-module. Let R[x] be
considered as a left R[x]-module over itself. Consider the subsets xnR[x], for n > 1,
then clearly the intersection of these sets is 0. We can argue the same for any free
left R[x]-module F (so F is a direct sum of copies of R[x]). Now recalling that any
projective left R[x]-module is direct summand of a free left R[x]-module, we see that
the intersection of all the xnP for P a projective left R[x]-module and n > 1 is
also 0. But xnR[x, x−1] = R[x, x−1] for any n > 1. So R[x, x−1] is not a projective
left R[x]-module. �
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