[2] L. Außenhofer:
Contributions to the duality theory of Abelian topological groups and to the theory of nuclear groups. PhD. thesis, Universität Tübingen, 1998.
MR 1736984
[3] L. Außenhofer:
Contributions to the duality theory of Abelian topological groups and to the theory of nuclear groups. Dissertationes Math. Vol. CCCLXXXIV, Warszawa, 1998.
MR 1736984
[5] W. Banaszczyk:
Additive Subgroups of Topological Vector Spaces. Lecture Notes in Mathematics Vol. 1466. Springer-Verlag, Berlin, 1991.
MR 1119302
[6] T. Bartoszyński and H. Judah:
Set Theory: on the Structure of the Real Line. A. K. Peters, Wellesley, 1990, pp. 546.
MR 1350295
[8] N. Bourbaki:
General Topology, Part 2. Addison-Wesley Publishing Company, Reading, Massachusetts, 1966, pp. 363.
MR 0205211 |
Zbl 0301.54002
[10] K. Ciesielski:
Set Theory for the Working Mathematician. London Mathematical Society Student Texts, Vol. 39 Cambridge University Press, Cambridge, 1997.
MR 1475462 |
Zbl 0938.03067
[15] W. W. Comfort, F. Javier Trigos-Arrieta and and Ta-Sun Wu:
The Bohr compactification, modulo a metrizable subgroup. Fund. Math. 143 (1993), 119–136.
MR 1240629
[17] D. N. Dikranjan, I. R. Prodanov and L. N. Stoyanov:
Topological Groups (Characters, Dualities and Minimal Group Topologies). Monographs and Textbooks in Pure and Applied Mathematics 130. Marcel Dekker, Inc., New York-Basel, 1990.
MR 1015288
[21] D. H. Fremlin:
Consequences of Martin’s Axiom. Cambridge Tracts in Mathematics, Vol. 84. Cambridge University Press, Cambridge, 1984.
MR 0780933
[22] L. Fuchs:
Infinite Abelian Groups, Vol. I. Academic Press, New York-San Francisco-London, 1970.
MR 0255673 |
Zbl 0209.05503
[23] J. Galindo and S. Hernández:
On the completion of a MAP group. In: Papers on General Topology and Applications. Proc. Eleventh (August, 1995) summer topology conference at the University of Maine. Annals New York Acad. Sci. Vol. 806, S. Andima, R. C. Flagg, G. Itzkowitz, Yung Kong, R. Kopperman, and P. Misra (eds.), New York, 1996, pp. 164–168.
MR 1429651
[25] A. Hajnal and I. Juhász:
Remarks on the cardinality of compact spaces and their Lindelöf subspaces. Proc. Amer. Math. Soc. 59 (1976), 146–148.
MR 0423283
[26] E. Hewitt and K. A. Ross:
Abstract Harmonic Analysis, Vol. I. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Vol. 115. Springer Verlag, Berlin-Göttingen-Heidelberg, 1963.
MR 0551496
[27] E. Hewitt and K. A. Ross:
Extensions of Haar measure and of harmonic analysis for locally compact Abelian groups. Math. Ann. 160 (1965), 171–194.
DOI 10.1007/BF01360918 |
MR 0186751
[28] E. Hewitt and K. R. Stromberg: Real and Abstract Analysis. Graduate Texts in Mathematics Vol. 25. Springer-Verlag, New York, 1965.
[29] H. Heyer:
Dualität lokalkompakter Gruppen. Lecture Notes in Mathematics Vol. 150. Springer-Verlag, Berlin-Heidelberg-New York, 1970.
DOI 10.1007/BFb0069778 |
MR 0274648
[30] M. Higasikawa:
Non-productive duality properties of topological groups. Topology Proc. 25 (2002), 207–216.
MR 1925684
[31] R. Hooper: A study of topological Abelian groups based on norm space theory. PhD. thesis, University of Maryland, College Park, 1967.
[32] M. Hrušák: Personal communication, November 20, 2000.
[36] A. S. Kechris:
Classical Descriptive Set Theory. Graduate Texts in Mathematics, Vol. 156. Springer-Verlag, New York, 1994.
MR 1321597
[38] K. Kunen:
Set Theory, An Introduction to Independence Proofs. Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Company, Amsterdam-New York-Oxford, 1980.
MR 0597342
[39] H. Leptin:
Abelsche Gruppen mit kompakten Charaktergruppen und Dualitätstheorie gewisser linear topologischer abelscher Gruppen. Abhandlungen Mathem. Seminar Univ. Hamburg 19 (1955), 244–263.
DOI 10.1007/BF02988875 |
MR 0068545 |
Zbl 0065.01501
[40] V. I. Malykhin and B. Šapirovskiĭ: Martin’s axiom and topological spaces. Doklady Akad. Nauk SSSR 213 (1973), 532–535. (Russian)
[42] S. U. Raczkowski-Trigos: Totally bounded groups. PhD. thesis, Wesleyan University, Middletown, 1998.
[43] M. Rajagopalan and H. Subrahmanian:
Dense subgroups of locally compact groups. Colloq. Math. 35 (1976), 289–292.
MR 0417325
[45] D. Remus:
Zur Struktur des Verbandes der Gruppentopologien. PhD. thesis, Universität Hannover, Hannover, 1983. (English)
Zbl 0547.22004
[46] D. Remus:
The number of $T_2$-precompact group topologies on free groups. Proc. Amer. Math. Soc. 95 (1985), 315–319.
MR 0801346
[48] D. Remus and F. Javier Trigos-Arrieta:
Locally convex spaces as subgroups of products of locally compact Abelian groups. Math. Japon. 46 (1997), 217–222.
MR 1479817
[49] W. Roelcke and S. Dierolf:
Uniform Structures on Topological Groups and Their Quotients. McGraw-Hill International Book Company, New York-Toronto, 1981.
MR 0644485
[50] H. H. Schaefer:
Topological Vector Spaces. Graduate Texts in Mathematics, Vol. 3, Springer Verlag, New York-Berlin-Heidelberg-Tokyo, 1986, pp. 294.
MR 0342978
[53] E. Specker:
Additive Gruppen von Folgen ganzer Zahlen. Portugal. Math. 9 (1950), 131–140.
MR 0039719
[54] S. M. Srivastava:
A Course on Borel Sets. Graduate Texts in Mathematics, Vol. 180, Springer-Verlag, New York-Berlin-Heildelberg, 1998.
MR 1619545 |
Zbl 0903.28001
[55] H. Steinhaus:
Sur les distances des points des ensembles de mesure positive. Fund. Math. 1 (1920), 93–104.
DOI 10.4064/fm-1-1-93-104
[56] K. Stromberg:
An elementary proof of Steinhaus’ theorem. Proc. Amer. Math. Soc. 36 (1972), 308.
MR 0308368
[57] S. Todorčević: Personal Communication, August, 2001.
[58] F. J. Trigos-Arrieta:
Pseudocompactness on groups. In: General Topology and Applications, S. J. Andima, R. Kopperman, P. R. Misra, J. Z. Reichman, and A. R. Todd (eds.), Marcel Dekker, Inc., New York-Basel-Hong Kong, 1991, pp. 369–378.
MR 1142814 |
Zbl 0777.22003
[60] J. E. Vaughan:
Small uncountable cardinals and topology. In: Open Problems in Topology, Chapter 11, J. van Mill, G. M. Reed (eds.), Elsevier Science Publishers (B. V.), Amsterdam-New York-Oxford-Tokyo, 1990.
MR 1078647
[62] A. Weil: Sur les Espaces à Structure Uniforme et sur la Topologie Générale. Publ. Math. Univ. Strasbourg, Vol. 551. (1938), Hermann & Cie, Paris.
[63] A. Weil: L’Integration dans les Groupes Topologiques et ses Applications. Actualités Scientifiques et Industrielle, Publ. Math. Inst. Strasbourg. Hermann, Paris, 1951.