Article
Keywords:
lattice ordered group; interpolation rule; radical class
Summary:
Let $\alpha $ be an infinite cardinal. In this paper we define an interpolation rule $\mathop {\mathrm IR}(\alpha )$ for lattice ordered groups. We denote by $C (\alpha )$ the class of all lattice ordered groups satisfying $\mathop {\mathrm IR}(\alpha )$, and prove that $C (\alpha )$ is a radical class.
References:
[1] P. F. Conrad:
Lattice Ordered Groups. Tulane University, 1970.
Zbl 0258.06011
[2] P. F. Conrad:
$K$-radical classes of lattice ordered groups. In: Proc. Conf. Carbondale (1980), Lecture Notes Math. Vol. 848, 1981, pp. 186–207.
MR 0613186 |
Zbl 0455.06010
[5] K. R. Goodearl:
Partially Ordered Abelian Groups with Interpolation. Math. Surveys and Monographs, No. 20. Amer. Math. Soc., Providence, 1986.
MR 0845783
[6] Ch. W. Holland:
Varieties of $\ell $-groups are torsion classes. Czechoslovak Math. J. 29 (1979), 11–12.
MR 0518135
[7] J. Jakubík:
Radical mappings and radical classes of lattice ordered groups. Symposia Math. 21 (1977), 451–477.
MR 0491397
[8] J. Jakubík:
On some completeness properties for lattice ordered groups. Czechoslovak Math. J. 45 (1995), 253–266.
MR 1331463
[9] N. Ja. Medvedev:
On the lattice of radicals of a finitely generated $\ell $-group. Math. Slovaca 33 (1983), 185–188. (Russian)
MR 0699088
[10] R. C. Walker:
The Stone-Čech Compactification. Ergebn. Math. 80. Springer-Verlag, Berlin-Heidelberg-New York, 1974.
MR 0380698