Previous |  Up |  Next

Article

Keywords:
Toeplitz operators; pluriharmonic Bergman space
Summary:
We prove that two Toeplitz operators acting on the pluriharmonic Bergman space with radial symbol and pluriharmonic symbol respectively commute only in an obvious case.
References:
[1] A.  Brown and P. R.  Halmos: Algebraic properties of Toeplitz operators. J.  Reine Angew. Math. 213 (1963/64), 89–102. MR 0160136
[2] B. R.  Choe and Y. J.  Lee: Commuting Toeplitz operators on the harmonic Bergman space. Michigan Math.  J. 46 (1999), 163–174. DOI 10.1307/mmj/1030132367 | MR 1682896
[3] B. R.  Choe and Y. J.  Lee: Pluriharmonic symbols of commuting Toeplitz operators. Illinois J.  Math. 37 (1993), 424–436. DOI 10.1215/ijm/1255987059 | MR 1219648
[4] . uković and N. V.  Rao: Mellin transform, monomial symbols, and commuting Toeplitz operators. J.  Funct. Anal. 154 (1998), 195–214. DOI 10.1006/jfan.1997.3204 | MR 1616532
[5] Y. J.  Lee: Pluriharmonic symbols of commuting Toeplitz type operators. Bull. Austral. Math. Soc. 54 (1996), 67–77. DOI 10.1017/S0004972700015082 | MR 1402993 | Zbl 0881.47015
[6] Y. J.  Lee: Pluriharmonic symbols of commuting Toeplitz type operators on the weighted Bergman spaces. Canad. Math. Bull. 41 (1998), 129–136. DOI 10.4153/CMB-1998-020-7 | MR 1624149 | Zbl 0920.47024
[7] Y. J.  Lee and K.  Zhu: Some differential and integral equations with applications to Toeplitz operators. Integral Equation Operator Theory 44 (2002), 466–479. DOI 10.1007/BF01193672 | MR 1942036
[8] S.  Ohno: Toeplitz and Hankel operators on harmonic Bergman spaces. Preprint.
[9] W.  Rudin: Function Theory in the Unit Ball of  $\mathbb{C}^n$. Springer-Verlag, Berlin-Heidelberg-New York, 1980. MR 0601594
[10] D.  Zheng: Commuting Toeplitz operators with pluriharmonic symbols. Trans. Amer. Math. Soc. 350 (1998), 1595–1618. DOI 10.1090/S0002-9947-98-02051-0 | MR 1443898 | Zbl 0893.47015
Partner of
EuDML logo