[2] I. Chajda:
Algebraic Theory of Tolerance Relations. Univerzita Palackého Olomouc, Olomouc, 1991.
Zbl 0747.08001
[3] I. Chajda and J. Nieminen:
Direct decomposability of tolerances on lattices, semilattices and quasilattices. Czechoslovak Math. J. 32 (1982), 110–115.
MR 0646716
[4] I. Chajda, J. Niederle and B. Zelinka:
On existence conditions for compatible tolerances. Czechoslovak Math. J. 26 (1976), 304–311.
MR 0401561
[7] G. Grätzer:
General Lattice Theory, Second edition. Birkhäuser-Verlag, Basel-Stuttgart, 1991.
MR 1670580
[8] G. Grätzer and E. T. Schmidt:
Ideals and congruence relations in lattices. Acta Math. Acad. Sci. Hungar. 9 (1958), 137–175.
DOI 10.1007/BF02023870 |
MR 0100560
[11] T. Katriňák and S. El-Assar:
Algebras with Boolean and Stonean congruence lattices. Acta Math. Hungar. 48 (1986), 301–316.
DOI 10.1007/BF01951357 |
MR 0861848
[13] S. Radeleczki:
A note on the tolerance lattice of atomistic algebraic lattices. Math. Pann. 13 (2002), 183–190.
MR 1932424 |
Zbl 1006.06004
[14] J. G. Raftery, I. G. Rosenberg and T. Sturm:
Tolerance relations and BCK algebras. Math. Japon. 36 (1991), 399–410.
MR 1109222
[15] I. G. Rosenberg and D. Schweigert:
Compatible orderings and tolerances of lattices. Ann. Discrete Math. 23 (1984), 119–150.
MR 0779849
[19] M. Stern:
Semimodular Lattices, Theory and Applications. Cambridge University Press, Cambridge-New York-Melbourne, 1999.
MR 1695504 |
Zbl 0957.06008
[20] G. Szász:
Einführung in die Verbändstheorie. Akadémiai Kiadó, Budapest, 1962.
MR 0138567