[1] J. A. Bondy and U. S. R. Murty:
Graph Theory with Applications. Macmillan, 1976.
MR 0411988
[2] P. Z. Chinn, J. Chvátalová, A. K. Dewdney and N. E. Gibbs:
The bandwidth problem for graphs and matrices—a survey. J. Graph Theory 6 (1982), 223–254.
DOI 10.1002/jgt.3190060302 |
MR 0666794
[4] F. R. K. Chung:
Labelings of Graphs, Selected Topics in Graph Theory, III. L. Beineke, R. Wilson (eds.), Academic Press, New York, 1988, pp. 151–168.
MR 1205400
[5] M. R. Garey, R. L. Graham, D. S. Johnson and D. E. Knuth:
Complexity results for bandwidth minimization. SIAM J. Appl. Math. 34 (1978), 477–495.
DOI 10.1137/0134037 |
MR 0478746
[6] F. Harary:
Problem 16. Theory of Graphs and its Applications. Proc. Symp., Smolenice, M. Fiedler (ed.), Czechoslovak Academy of Sciences, Prague, 1964.
MR 0175111
[8] D. J. Kleitman and R. V. Vohra:
Computing the bandwidth of interval graphs. SIAM J. Discrete Math. 3 (1990), 373–375.
DOI 10.1137/0403033 |
MR 1061978
[9] R. R. Korfhage: Numberings of the vertices of graphs. Computer Science Department Technical Report 5, Purdue University, Lafayette, 1966.
[10] Peter C. B. Lam, W. C. Shiu and Y. Lin:
Duality in the bandwidth problems. Congressus Numerantium 124 (1997), 117–127.
MR 1605101
[11] M. M. Syslo and J. Zak:
The bandwidth problem: Critical subgraphs and the solution for caterpillars. Ann. Discrete Math. 16 (1982), 281–286.
MR 0686313