[1] R. G. Bartle:
Elements of Real Analysis. John Wiley & Sons, Inc., New York, 1964.
MR 0393369
[4] J. Connor:
$R$-type summability methods, Cauchy criteria, $P$-sets and statistical convergence. Proc. Amer. Math. Soc. 115 (1992), 319–327.
MR 1095221 |
Zbl 0765.40002
[5] J. Connor and M. A. Swardson:
Strong integral summability and the Stone-Čech compactification of the half-line. Pacific J. Math. 157 (1993), 201–224.
DOI 10.2140/pjm.1993.157.201 |
MR 1197054
[6] J. Connor:
A topological and functional analytic approach to statistical convergence. Analysis of Divergence, Birkhäuser-Verlag, Boston, 1999, pp. 403–413.
MR 1734462 |
Zbl 0915.40002
[7] J. Connor and J. Kline:
On statistical limit points and the consistency of statistical convergence. J. Math. Anal. Appl. 197 (1996), 393–399.
DOI 10.1006/jmaa.1996.0027 |
MR 1372186
[8] J. Connor, M. Ganichev and V. Kadets:
A characterization of Banach spaces with separable duals via weak statistical convergence. J. Math. Anal. Appl. 244 (2000), 251–261.
DOI 10.1006/jmaa.2000.6725 |
MR 1746802
[9] K. Demirci and C. Orhan:
Bounded multipliers of bounded $A$-statistically convergent sequences. J. Math. Anal. Appl. 235 (1999), 122–129.
DOI 10.1006/jmaa.1999.6371 |
MR 1758671
[18] T. Šálat:
On statistically convergent sequences of real numbers. Math. Slovaca 30 (1980), 139–150.
MR 0587239
[19] H. Steinhaus: Sur la convergence ordinaire et la convergence asymptotique. Colloq. Math. 2 (1951), 73–74.
[20] W. Wilczyński:
Statistical convergence of sequences of functions. Real Anal. Exchange 25 (2000), 49–50.
DOI 10.2307/44153029
[21] A. Zygmund: Trigonometric Series. Second edition. Cambridge Univ. Press, Cambridge, 1979.