[3] R. Goldblatt:
TOPOI, The Categorical Analysis of Logic. North-Holland Publ. Co., Amsterdam-New York-Oxford, 1979.
MR 0551362
[4] D. Higgs: A Category Approach to Boolean-Valued Set Theory. Manuscript, University of Waterloo, 1973.
[5] U. Höhle:
Presheaves over GL-monoids. In: Non-Classical Logic and Their Applications to Fuzzy Subsets, Kluwer Academic Publ., Dordrecht-New York, 1995, pp. 127–157.
MR 1345643
[6] U. Höhle:
M-Valued sets and sheaves over integral, commutative cl-monoids. Applications of Category Theory to Fuzzy Subsets, Kluwer Academic Publ., Dordrecht-Boston, 1992, pp. 34–72.
MR 1154568
[7] U. Höhle:
Classification of subsheaves over GL-algebras. Proceedings of Logic Colloquium 98, Prague, Springer Verlag, 1999.
MR 1743263
[8] U. Höhle:
Commutative, residuated l-monoids. Non-Classical Logic and Their Applications to Fuzzy Subsets, Kluwer Academic Publ., Dordrecht-New York, 1995, pp. 53–106.
MR 1345641
[11]
Toposes, Algebraic Geometry and Logic. F. W. Lawvere (ed.), Springer-Verlag, Berlin-Heidelberg-New York, 1971.
MR 0330254
[12] M. Makkai and E. G. Reyes:
Firts Order Categorical Logic. Springer-Verlag, Berlin-New York-Heidelberg, 1977.
MR 0505486
[16] A. Pultr: Closed Categories of L-fuzzy Sets. Vortrage zur Automaten und Algorithmentheorie, TU Dresden, 1976.
[18] O. Wyler:
Fuzzy logic and categories of fuzzy sets. Non-Classical Logic and Their Applications to Fuzzy Subsets, Kluwer Academic Publ., Dordrecht-New York, 1995, pp. 235–268.
MR 1345646 |
Zbl 0827.03039