[1] P. Busch, P. J. Lahti and P. Mittelstaedt:
The Quantum Theory of Measurement. Lecture Notes in Physics. Springer-Verlag, Berlin-Heidelberg-New York-London-Budapest, 1991.
MR 1176754
[3] R. Cignoli, I. M. L. D’Ottaviano and D. Mundici:
Algebraic Foundations of Many-Valued Reasoning. Kluwer Academic Publ., Dordrecht, 2000.
MR 1786097
[4] F. Chovanec:
States and observables on $MV$-algebras. Tatra Mt. Math. Publ. 3 (1993), 55–65.
MR 1278519 |
Zbl 0799.03074
[6] A. Dvurečenskij and S. Pulmannová:
New Trends in Quantum Structures. Kluwer Acad. Publ., Dordrecht, Ister Science, Bratislava, 2000.
MR 1861369
[7] A. Dvurečenskij and T. Vetterlein:
Pseudoeffect algebras. I. Basic properties. Inter. J. Theor. Phys. 40 (2001), 685–701.
MR 1831592
[8] A. Dvurečenskij and T. Vetterlein:
Pseudoeffect algebras. II. Group representations. Inter. J. Theor. Phys. 40 (2001), 703–726.
MR 1831593
[12] A. N. Kolmogorov:
Grundbegriffe der Wahrscheinlichkeitsrechnung. Berlin, 1933.
Zbl 0007.21601
[15] D. Mundici:
Reasoning on imprecisely defined functions. In: Discovering the World with Fuzzy Logic. Studies in Fuzziness and Soft Computing, V. Novák, I. Perfilieva (eds.), Physica-Verlag, Berlin, 2000, pp. 331–366.
MR 1858107 |
Zbl 1007.03024
[16] Z. Riečanová:
A generalization of blocks for lattice effect algebras. Inter. J. Theoret. Phys. 39 (2000), 231–237.
MR 1762594
[17] B. Riečan and D. Mundici:
Probability on $MV$-algebras. In: Handbook of Measure Theory, E. Pap (ed.), North-Holland, Amsterdam, 2002, pp. 869–910.
MR 1954631