Previous |  Up |  Next

Article

Keywords:
algebra; effect algebra; $MV$-algebra; test space; $MV$-test space; state; weight
Summary:
In analogy with effect algebras, we introduce the test spaces and $MV$-test spaces. A test corresponds to a hypothesis on the propositional system, or, equivalently, to a partition of unity. We show that there is a close correspondence between $MV$-algebras and $MV$-test spaces.
References:
[1] P. Busch, P. J. Lahti and P. Mittelstaedt: The Quantum Theory of Measurement. Lecture Notes in Physics. Springer-Verlag, Berlin-Heidelberg-New York-London-Budapest, 1991. MR 1176754
[2] C. C.  Chang: Algebraic analysis of many valued logics. Trans. Amer. Math. Soc. 88 (1958), 467–490. DOI 10.1090/S0002-9947-1958-0094302-9 | MR 0094302 | Zbl 0084.00704
[3] R.  Cignoli, I. M. L.  D’Ottaviano and D.  Mundici: Algebraic Foundations of Many-Valued Reasoning. Kluwer Academic Publ., Dordrecht, 2000. MR 1786097
[4] F.  Chovanec: States and observables on $MV$-algebras. Tatra Mt. Math. Publ. 3 (1993), 55–65. MR 1278519 | Zbl 0799.03074
[5] A.  Dvurečenskij and S.  Pulmannová: D-test spaces and difference posets. Rep. Math. Phys. 34 (1994), 151–170. DOI 10.1016/0034-4877(94)90034-5 | MR 1323126
[6] A.  Dvurečenskij and S.  Pulmannová: New Trends in Quantum Structures. Kluwer Acad. Publ., Dordrecht, Ister Science, Bratislava, 2000. MR 1861369
[7] A.  Dvurečenskij and T.  Vetterlein: Pseudoeffect algebras. I.  Basic properties. Inter. J.  Theor. Phys. 40 (2001), 685–701. MR 1831592
[8] A.  Dvurečenskij and T.  Vetterlein: Pseudoeffect algebras. II.  Group representations. Inter. J.  Theor. Phys. 40 (2001), 703–726. MR 1831593
[9] D. J.  Foulis and M. K.  Bennett: Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1325–1346. DOI 10.1007/BF02283036 | MR 1304942
[10] D. J.  Foulis and C. H.  Randall: Operational statistics. I.  Basic concepts. J.  Math. Phys. 13 (1972), 1667–1675. DOI 10.1063/1.1665890 | MR 0416417
[11] S.  Gudder: Effect test spaces. Inter. J.  Theor. Phys. 36 (1997), 2681–2705. MR 1614188 | Zbl 0946.81006
[12] A. N.  Kolmogorov: Grundbegriffe der Wahrscheinlichkeitsrechnung. Berlin, 1933. Zbl 0007.21601
[13] D.  Mundici: Interpretation of $AF$ $C^*$-algebras in Łukasiewicz sentential calculus. J.  Funct. Anal. 65 (1986), 15–63. DOI 10.1016/0022-1236(86)90015-7 | MR 0819173 | Zbl 0597.46059
[14] D.  Mundici: Averaging the truth-value in Łukasiewicz logic. Studia Logica 55 (1995), 113–127. DOI 10.1007/BF01053035 | MR 1348840 | Zbl 0836.03016
[15] D.  Mundici: Reasoning on imprecisely defined functions. In: Discovering the World with Fuzzy Logic. Studies in Fuzziness and Soft Computing, V.  Novák, I.  Perfilieva (eds.), Physica-Verlag, Berlin, 2000, pp. 331–366. MR 1858107 | Zbl 1007.03024
[16] Z.  Riečanová: A generalization of blocks for lattice effect algebras. Inter. J.  Theoret. Phys. 39 (2000), 231–237. MR 1762594
[17] B.  Riečan and D.  Mundici: Probability on $MV$-algebras. In: Handbook of Measure Theory, E.  Pap (ed.), North-Holland, Amsterdam, 2002, pp. 869–910. MR 1954631
Partner of
EuDML logo