[1] G. Bianchi, F. Segala, and A. Volčič:
The solution of the covariogram problem for plane $C^2_+$ convex bodies. J. Differential Geom. 60 (2002), 177–198.
DOI 10.4310/jdg/1090351101 |
MR 1938112
[4] A. Lešanovský and J. Rataj: Determination of compact sets in Euclidean spaces by the volume of their dilation. DIANA III (Proc. conf.), MÚ ČSAV, Praha, 1990, pp. 165–177.
[5] A. Lešanovský, J. Rataj and S. Hojek:
0-1 sequences having the same numbers of (1-1) couples of given distances. Math. Bohem. 117 (1992), 271–282.
MR 1184540
[7] W. Nagel: Das Geometrische Kovariogramm und verwandte Größen zweiter Ordnung. Habilitationsschrift, Friedrich-Schiller-Universität Jena (1992).
[8] R. Pyke: Problems corner. IMS Bulletin 18 (1989), 387.
[12] J. Rataj and M. Zähle:
Mixed curvature measures for sets of positive reach and a translative integral formula. Geom. Dedicata 57 (1995), 259–283.
DOI 10.1007/BF01263484 |
MR 1351855
[14] J. Rataj and M. Zähle:
A remark on mixed curvature measures for sets with positive reach. Beiträge Alg. Geom. 43 (2002), 171–179.
MR 1913777