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For z,y € R™, m > 2, denote

(m—=2)""A o —y>™  for z#y,
he(y) =
00 for x =y,

where A is the area of the unit sphere in R™. For a finite real Borel measure v denote

2@ = [ ),

the single layer potential corresponding to v, for each x for which this integral has
sense.

Suppose that G C R™ (m > 2) is an open set with a non-void compact bound-
ary OG such that 0G = O(R™ \ G). Suppose moreover that for each z € G there

exists
L HW(GN Q)
de(@) = Iy @ @)

Here Q,.(x) is the open ball with centre x and diameter r, and Hj, is the k-dimensional

> 0.

Hausdorff measure normalized so that H}, is the Lebesgue measure in RF.
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Fix a nonnegative element A of C'(0G) (= the Banach space of all finite signed
Borel measures with support in 0G, with the total variation as the norm) and suppose
that the single layer potential % A is finite and continuous on 9G. It was shown in [23]
that % A is finite and continuous on 0G if and only if

lim sup / hy(x)dX\(z) = 0.
=0+ yedG Ja, (y)

According to [11], Lemma 2.18 this is true if there are constants a > m — 2 and
k > 0 such that A(Q,.(2)) < kr® for all z € R™ and all » > 0.
If h is a harmonic function on G such that

/ Vh| dH,, < 00
H

for all bounded open subsets H of G we define the weak normal derivative Nh of h
as the distribution

<NGh,<p>:/ Vo -VhdH,,
G

for ¢ € 2 (= the space of all compactly supported infinitely differentiable functions
in R™).
If H C R™ is an open set with a compact smooth boundary, u € C'(cl H) is a

harmonic function on H and

@Jrfu:g on OH
on

where f,g € C(OH) (= the space of all finite continuous functions on 0H equipped
with the maximum norm) and n is the exterior unit normal of H, then for ¢ € 2
we have

(1) / 0g dHpm_1 =/ V@-Vude—i—/ ofudHy,_1.
OH H OH

If we denote by H the restriction of H,,—1 to 9H then (1) has the form

(2) NAw+ufH = gH.

The formula (2) motivates our definition of the solution of the third problem for
the Laplace equation

(3) Au=0 in G,
NG+ ul = p,

where p € C'(0G) (compare [11], [22]).
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Let u € C'(0G). Now we formulate the third problem for the Laplace equation (3)
as follows: Find a function u € L*(\) on clG, the closure of G, harmonic on G,
for which |Vu| is integrable over all bounded open subsets of G, such that for A-a.a.
x € OG there is a set H with dg(z) =0 and

(4) lim - u(y) = u(z),

y—x

yEG\H

and such that NCu + u\ = p.

Suppose in this paragraph that G has a locally Lipschitz boundary and u €
W12(Q). Tt is well-known that we can even suppose that u € W1H2(R™) (see [30],
Remark 2.52). We can choose such a representation of u that u is approximately
continuous at H,,_1-a.a. points of R™ (see [30], Theorem 3.3.3, Theorem 2.6.16 and
Remark 3.3.5). The restriction of u to dG is the trace of u (see [30], p. 190). If H
denotes the restriction of H,,—1 to G, then u € La(H) (see [19], Theorem 1.2). If
f is a nonnegative bounded Baire function on 0G and g € Lo(H), then u is called a
weak solution of the problem Au =0 in G, du/dn+ fu =g on G if

/ vgde_lz/ Vv-Vude—i—/ foudH,—1
oG G oG

for each v € W12(GQ) (compare [19], Example 2.12). Put A\ = fH, u = gH. Using
Hélder’s inequality we see that |Vu| is integrable over all bounded open subsets
of G. Since w is approximately continuous at H,,_i-a.a. points of R™ and X is
absolutely continuous with respect to H,,_1, we obtain that for A-a.a. € G there
is a set H with dy(z) = 0 such that (4) holds. Since 2 C W12(G), u is a solution
of (3). Therefore, our definition is a generalization of the weak solution of the third
problem for the Laplace equation in the Sobolev space W12(G).

It is usual to look for a solution u in the form of the single layer potential Z v,
where v € C’'(0G). It was shown in [16] that % v has all the properties of a solution
of the third problem with some boundary condition, but our “continuity” on the
boundary is replaced by the fine continuity at A-a.a. points of the boundary. If Z v
is finely continuous at # € G with respect to cl G then there is H with dgy(x) =0
such that

lim u(y) = u(z)

Yy—

yEG\H

(see [10], Theorem 10.15, Corollary 10.5). If Z v is a solution of the third problem
in the sense of [16] then it is a solution of the third problem in our sense.
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The operator 7: v +— NS% v + (% v)) is a bounded linear operator on C’(9G) if
and only if V¢ < oo, where

VG = sup v%(x),
z€dG

vG(z) = SUP{/ Vo VhydHm; ¢ € 2, |p| <1, spty CR™ — {w}}
G

(see [11]). There are more geometrical characterizations of v“(z) in [11] which ensure
k

that V¢ < oo for G convex or for G with G C |J L;, where L; are (m — 1)-
i=1

1=

dimensional Ljapunov surfaces, i.e., of class C1+<.

If z € R™ and € is a unit vector such that the symmetric difference of G and
the half-space {x € R™; (z — z) - § < 0} has m-dimensional density zero at z then
n%(z) = 0 is termed the exterior normal of G at z in Federer’s sense. If there is no
exterior normal of G at z in this sense, we denote by n%(z) the zero vector in R™.
The set {y € R™; [n%(y)| > 0} is called the reduced boundary of G and will be
denoted by dG.

If G has a finite perimeter (which is fulfilled if VC < 00) then Hym_1(0G) < 0o
and

o9 () = / 1n%(y) - Vha(y)] dHom—1 (1)
oG

for each € R™. Throughout the paper we shall assume that V¢ < oo.

If L is a bounded linear operator on a Banach space X we denote by ||L||ess
the essential norm of L, i.e. the distance of L from the space of all compact linear
operators on X. The essential spectral radius of L is defined by

FessL = Hm (|| L™ |less)™.

Theorem 1. Let ress(T — 51) < 3, where I is the identity operator. Then G has

finitely many components G1,...,G, and c1G; NclGy =0 for j # k. If p € C'(9G)
then there is a harmonic function v on G, which is a solution of the third problem

N+ ul = p,

if and only if i1 € C{(OG) (= the space of such v € C'(0G) that v(0G},) = 0 for each
bounded G}, for which A\(0G),) = 0). Moreover, if 1 € C{(0G) then there is a solution
of this problem in the form of the single layer potential % v, where v € Cj(9G).

Proof. According to [18], Lemma 3 the set G has finitely many components
Gi,...,Gpand clGjNcl Gy = () for j # k. Let u be a solution of the third problem

N+ ul = p.
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If Gy is bounded and A\(OGj) = 0 choose ¢ € & such that ¢ =1 on G and ¢ =0
on G\ Gi. Then
p(OGy) = (1, ) = (N9u+u), ) = 0.

On the other hand, if u € C{(0G) then [16], Theorem 1 yields that there is a
solution of this problem in the form of the single layer potential % v, where v €

Cl(9G). O

Remark. It is well-known that the condition ress(7 — %I ) < % is fulfilled for sets
with a smooth boundary (of class C''*®) (see [12]) and for convex sets (see [20]).
R.S. Angell, R.E. Kleinman, J. Kral and W.L. Wendland proved that rectangu-
lar domains (i.e. formed from rectangular parallelepipeds) in R? have this property
(see [3], [13]). A. Rathsfeld showed in [25], [26] that polyhedral cones in R have
this property. (By a polyhedral cone in R® we mean an open set 2 whose boundary
is locally a hypersurface (i.e. every point of 92 has a neighbourhood in 992 which
is homeomorphic to R?) and 91 is formed by a finite number of plane angles. By
a polyhedral open set with bounded boundary in R® we mean an open set §2 whose
boundary is locally a hypersurface and 0f) is formed by a finite number of poly-
gons.) N.V. Grachev and V. G. Maz’ya obtained independently an analogous result
for polyhedral open sets with bounded boundary in R? (see [8]). (Let us note that
there is a polyhedral set in R® which has not a locally Lipschitz boundary.) In [15] it
was shown that the condition regs (7 — %I ) < % has a local character. As a conclusion
we obtain that this condition is fullfiled for G C R? such that for each x € G there
are r(x) > 0, a domain D, which is polyhedral or smooth or convex or a comple-
ment of a convex domain and a diffeomorphism 1, : % (z;7(z)) — R? of class C1 T,
where o > 0, such that ¢, (GN% (z;7(x))) = Dy Npe (% (x;r(x))). V. G. Maz’ya and
N. V. Grachev proved this condition for several types of sets with “piecewise-smooth”
boundary in the general Euclidean space (see [6], [7], [9]).

In the rest of paper we will suppose that res (T — %I) < % Since 7 — NC% is
a compact operator (see [16], Remark 5), this condition is equivalent to the condi-
tion ress(NCU — %I) < % Denote by H the restriction of H,,_1 onto dG. Then
H(R™) < oo (see [17], Lemma 2).

Notation. C/(9G) will stand for the subspace of those p € C'(9G) for which there
exists a finite continuous function %, on R™ coinciding with % on R™ \ 9G. It
was shown in [24] that if v € C'(0G) and the restriction of % v to OG is finite and
continuous then % v is finite and continuous in R™ and v € CL(0G). If p = fH,

where f € L,(H), p > m — 1 then u € C.(OG) (see [16], Remark 6).

Remark. Let p € C'(0G). According to [18], Theorem 1 the following assertions

are equivalent:
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1) u e CL(OG).

2) There is a finite continuous extension of % 1 from G onto clG.

3) Put K = {x € 0G; % |p|(x) = oo}. Then there is a finite continuous function f
on G such that Zp = f on 0G \ K.

Lemma 1. If H is a bounded component of G then there is v € C.(0G) such
that v =1on H and Zv =0 0on G\ H.

Proof. Denote by Gq,...,G, all bounded components of G. If ¢ € Ker N¢%
then o € C.(0G) and % o is locally constant on G by [17], Lemma 4, Lemma 12. Since
Uo(x) — 0 as |z| — oo, the function % o vanishes on the unbounded component
of G. If o = 0 in G then %o is a harmonic function in R™ \ G which vanishes
on OG and converges to 0 at infinity, hence Zo = %.c = 0 in R™ \ JG. Since
Hm(0G) = 0 (see [17], Lemma 2) we obtain o = 0 by [14], Theorem 1.12. Since
NY% is a Fredholm operator with index 0 and the codimension of the range of
NY% is equal to n by [17], Theorem 1, the dimension of Ker N®% is equal to n.
Therefore there is v € Ker N% C C.(OG) such that v =1 on H and v = 0 on
G\ H. O

Lemma 2. Let K C R™ be compact, u be a harmonic function on R™ \ K, and
2o € K. Denote U = {(x — x¢)/|z — xo|*; z € R™ \ K} U{0}. Then there are a real
number a, a function v harmonic on U with v(0) = 0 and a function w harmonic
on R™ such that

(5) u(@) = w(@) + ahq, + | — zo[*""v((x — @0)/|w — w0l*)

in R™ \ K. This decomposition is unique.

Proof. We can suppose that xg = 0. According to [1], Corollary 2.3 there is a
unique function w harmonic on R™ such that u(x) —w(z) = O(|z|>~™) as x| — oco.
Denote

0(x) = |27 [u(z/|2*) — w(x/|[*)] for z € U\{0}.

Then v, the Kelvin transfomation of the function u — w, is a harmonic function on
U\ {0} (see [5], Theorem B.15). Since U is a neighbourhood of 0, ¥ is bounded on
U N, 0)\ {0} for some r > 0, so there is a harmonic extension ¢ of ¥ onto U (see
for example [2]). Put a = 6(0), v(x) = 0(z) — a. An easy calculation yields (5). O

Notation. Let a« = (1, ..., ;) be a multiindex. Denote |a] = a1 + ... + ayy,
the length of a. For a function w denote

ol (2
Dw(z) = 0 (z)

oxTt ... 0xy
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If n is a positive integer denote V"w(z) = {D%w(zx); |a| = n},

[N

Vo) = | T D)

|a]=n

Further denote Vow = w.

Lemma 3. Letzy € K C R™ be compact, u be a harmonic function on R™ \ K.
Let n be nonnegetive integer. Then the following assertions are equivalent:

a) u(z) = o(|z|™) as |z| — oo.

b) u(z) = P(x)+ahy, + |z — 20> ™ v((x —30) /|2 — 20|?), Where a is a real number,
v is a harmonic function on a neighbourhood of 0 with v(0) =0, P =0 forn =0
and P is a harmonic polynomial of degree smaller than n for n > 0.

c) There are R > 0, 1 < p < oo such that |V"u| € L,(R™ \ Qr(zo)).

d) There is R > 0 such that |V*u| € L,(R™ \ Qg(x)) for each integer k > n and
for each p > m/(m + k — 2).

Proof. The implications b) = d) = ¢), b) = a) are evident.

a) = b) Denote U = {(x — z0)/|z — x0*; # € R™ \ K} U {0}. Then there
are a real number a, a function v harmonic on U with v(0) = 0 and a function w
harmonic on R™ such that u(z) = w(z) + ahg, (z) + |v — 20>~ v((z — 20) /|7 — 20|?)
in R™ \ K. Then w(z) = o(|z|™) as |x| — oo. Therefore there is a constant ¢ such
that |w(z)| < c|z|™ for each 2 € R™. If @« = («1,...,q,) is a multiindex with
the length || greater than n then [5], Theorem B.9 yields that there is a positive
constant ¢, such that

sup |D%w(z)| < car™ sup |w(z)| < cqe2mrm 1o

jol<r jeol<2r
for each r > 0. Putting r — oo we get D*w = 0. Therefore w is a polynomial of
degree at most n (see for example [28], Chapter IV, Theorem 2.16). Since w(z) =
o(]z|™) as |z| — oo, w is a polynomial of degree smaller than n for n > 0 and w =0
for n = 0.

¢) = b) For 1 < p see [28], Chapter IV, Lemma 4.1, Lemma 4.2. Let now p = 1.

Denote U = {(z—x¢)/|r—z0|?; * € R™\ K}U{0}. Then there are a real number a, a
function v harmonic on U with v(0) = 0 and a function w harmonic on R™ such that
w(z) = w(r)+ahg, +|r—20>""v((x—20)/|T—20|?) iIn R®\ K. Let a = (a1,..., )
be a multiindex with the length || = n. We will show that D*w = 0. Suppose that
lw(y)| > 0. Fix ¢ > 0 such that Qr(0) C Q,(y). It is easy to see that there is a
constant b such that

|D[ahq, (x) + |z — 20> " v((x — 20)/|z — wo|)]| < blz — y*~™
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for x € R™ \ Q,(y). Using mean-value property of the harmonic function w we get

/ |Dau|de>/ [/ DYwdH, 1 —/ bt2 "™ AH,py g | dt
R™\QR(0) o0 0 (y) 0Q:(y)

= /OO[Iw(y)Iltm‘1 — bt]H 1 (091 (0)) dt = oo,

which contradicts the fact that D%u € Li(R™ \ Q2z(0)). Since D*w = 0 for each
multiindex « with |a| > n, w is a polynomial of degree smaller than n for n > 0
(see [28], Chapter IV, Theorem 2.16) and w = 0 for n = 0. O

Notation. For p > 1 denote by W?(G) the collection of all functions f € L,(G)
the distributional gradient of which belongs to [L,(G)]™.

Theorem 2. Denote by G1,...,Gy all components of G such that A\(0G;) = 0.
If u € C,(OG) then there is a solution of the third problem

N+ ul = p,

which is finite and continuous up to the boundary, if and only if u € CL(0G). If G is
bounded then the general form of this solution is

k

(6) u:%u—f—chXGj,
j=1

where

= T—al\"pu
7 = <_ ) N
(7) v nz:% —) -

Liye

a>—(V + 1+ sup %A(m)),
2 z€dG

XG, are characteristic functions of Gj, and c; are arbitrary constants. If G' is un-
bounded and G; are bounded for j =1,...,k then (6) is a general form of solutions
continuously extendible to the closure of G for which there are R > 0, p > 1 such
that u € L,(G \ Qg(0)). If G is unbounded and there is j € {1,...,k} such that
G; is unbounded, then (6) is a general form of solutions continuously extendible to
the closure of G for which there are R > 0, p > 1 such that |Vu| € L,(G \ Qr(0)).

Proof. Ifu € C.L(OG) then [16], Theorem 1, Theorem 2 yield that the function u
given by (6) is a solution of the third problem (3), which is finite and continuous up
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to the boundary. If G is unbounded then |Vu| € L,(G\Qr(0)) for ¢ > 2; if moreover
G; are bounded for j = 1,...,k then u € Wh4(G \ Qg(0)) for ¢ > 4.

Let now v be a solution of the third problem (3), which is finite and continuous
up to the boundary. Then v is a solution of the Neumann problem in the sense of
distributions with the boundary condition x — vA. Since p — vA € CL(OG) by [18],
Theorem 2 and vA = vt A—v~\ € CL(OG) by [22], Proposition 6, we have p € CL(0G).

If G is unbounded and there is j € {1, ..., k} such that G, is unbounded, suppose
that there are R > 0, p > 1 such that |Vv| € L,(G\ Qr(0)). According to Lemma 3
we have |Vv| € Ly (G \ Qg(0)) for all ¢ > 2. If G is unbounded and G, are bounded
for j =1,...,k suppose that there are R > 0, p > 1 such that v € L,(G \ Qr(0)).
According to Lemma 3 we have v € Wh4(G \ Qg(0)) for all ¢ > 4.

Put w = u —v. Then w is a solution of the Neumann problem in the sense
of distributions with the boundary condition —wX, which is continuous up to the
boundary. Let Gi,...,G, be all components of G. According to [18], Theorem 2,
Theorem 1 there are p € C.(0G) and constants dy, ..., d, such that

w = %Q+ZdeGj.

Jj=1

If j > k and G; is unbounded then d; = 0, because w € Wh(G \ Qr(0)). If
G1,...,Gy are bounded then there is o € C.(0G) such that w = % o by Lemma 1.
Since 70 = 0, w is locally constant on G and w = 0 on G; for j > k by [16],
Lemma 11.

Suppose now that there is i < k such that G; is unbounded. Put H = G \ G;.
Since w is a solution of the third problem N w-+wA = 0 on H, which is continuously
extendible to cl H, w is locally constant on H and w = 0 on G; for j > k. Since w is
a solution of the Neumann problem on G; with the zero boundary condition (in the
sense of distributions), which is continuously extendible to ¢l G;, w is constant on G;
by [18], Theorem 2. O

Remark. Put G = R™ \ c1Q1(0), A = H, u(z) = |[z[>™ + m — 3. Then u is
a nonconstant harmonic function in G, continuous on the closure of G, |Vu| €
L3(G) (compare Lemma 3) and N%u —u) = 0. Therefore we see that the condition
u € Ly,(G\ Qr(0)) in Theorem 2 cannot be substituted by the condition |Vu| €
L,(G\ Qr(0)) (compare [18], Theorem 2).

Corollary 1. Let u € C'(0G) and let v be a solution of the third problem for
the Laplace equation in the sense of distributions with the boundary condition .
Suppose that v is continuously extendible to the closure of G. If |Vv| € L,(G\Qr(0))
for some R > 0, p > 1 then |Vv| € Lo(G). If v € L,(G \ Qg(0)) for some R > 0,
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p>1andm > 4 then v € WH(G). Ifv € L,(G\ Qr(0)) for some R > 0, p > 1,
m < 4 and X does not charge the unbounded component of c1 G then v € W%(G) if
and only if (0H) = 0 for the unbounded component H of clG.

Proof. If G is bounded then this assertion is a consequence of Theorem 2 and
[18], Lemma 8. Suppose now that G is unbounded. Let u is given by (6). According
to Lemma 3 we have |Vul, |[Vv| € Ly(G\ Qr(0)) for all ¢ > 2. Put w = v —w.
Then w is a solution of the Neumann problem N%w = —w, which is continuously
extendible to the closure of G. Let G1,...,G, be all components of G. According
o [18], Theorem 2, Theorem 1 there are p € C.(0G) and constants di,...,d, such
that .

w = %Q+ZdeGj.
j=1

Since |Vul,|Vw| € La(G) by [16], Theorem 1, Theorem 2, [18], Lemma 7, we have
|[Vu| € La(G). Suppose now that v € L,(G \ Qr(0)) for some R > 0, p > 1. Since
v is continuous on clG, v € Ly(G,) for each bounded component G; of G. Denote
by G the unbounded component of G, X the restriction of A to cl G, i the restriction
of ju to cIG. Then NG + v) = fi. Since VE < o0, ress(Né% —3) < 3 (see [15],
Theorem 2.3), Theorem 2 yields that v = %7 on G, where 7 € C,(dG). Since v is
continuous on the closure of G, we have v € Ly(G) for m > 4. Let now A = 0.
According to [17], Theorem 1 we can choose

=i+ (I- oaNCu ) (I — NCu)2ji.
7=0

A

Since #(R™) = 0 if and only if 4(R™) = 0 (see [17], Lemma 9), v € W'2(G) if and
only if Z(R™) = 0 by [18], Lemma 8. O

Theorem 3. Let G be an unbounded domain, u € CL(0G) N C{(OG). Then the
general form of a solution of the third problem (3), which is finite and continuous
up to the boundary, is

(8) u=Uv+ w,

where w Is a harmonic function in R™ and

0 u=i<—f;“>"$<ﬂ—§—ww )

(VG +1 +xs§9%02/A( ))
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Let k be a positive integer. Then u is a solution of the third problem (3), which is
finite and continuous up to the boundary and u(z) = O(|z|*~1) as |x| — oo, if and
only if u is given by (8), where v is given by (9) and w is a harmonic polynomial of
degree smaller than k.

Proof. Ifu is given by (8) then w is a solution of the third problem (3), which
is finite and continuous up to the boundary (see Theorem 2). If w is a harmonic
polynomial of degree smaller than k then u(x) = O(|z|*~!) as |z| — oo by Lemma 3.

Let now u be a solution of the third problem (3) which is finite and continuous up
to the boundary. According to Lemma 2 there are a function v harmonic on G and a
function w harmonic on R™ such that u = w+v, v(z) = o(1) as |z| — co. According
to Lemma 3 there are p > 1 and R > 0 such that v € L,(R™ \ Qg(0)). Since
v is a solution of the third problem in the sense of distributions with the boundary
condition u — (Qw/dn)H — wA, which is finite and continuous up to the boundary,
Theorem 2 yields that v = % v, where v is given by (9). If u(z) = O(Jz|*"!) as
|z| — oo then w(z) = O(Jx|¥~1) as |z| — oo and w is a harmonic polynomial of

degree smaller than k£ by Lemma 3 and Lemma 2. 0

Definition. Suppose that G has a locally Lipschitz boundary. Let f € Lo (H)
be a nonnegative function. Let L be a bounded linear functional on W1?(G) such
that L(p) = 0 for each p € 2(G) = {¢p € Z; spty C G}. We say that u € W'2(G)
is a weak solution of the third problem

(10) Au=0 on G,
9u +uf =L on 0G,
on
if
(11) / Vu~V'Ud’Hm+/ ufvdH = L(v)
G oG

for each v € W12(G).

Lemma 4. Suppose that G has a locally Lipschitz boundary, u € C.(0G). Then
there is a unique bounded linear functional L, on W'2?(G) such that

(12) Lu(p) = /aGwdu

for each p € 9.
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Proof. Fix areal number ¢ such that u(0G) — cH(9G) = 0. Since cH € CL(0G)
there is a bounded linear functional L on W?(G) such that

L(p) = /8G pd(p—cH)

for each ¢ € 2 (see [18], Lemma 9). If we define L,(v) = L(v) + ¢ [vdH for
v € WH2(Q), then L, is a bounded linear operator on W?(G) satisfying (12).
Since 2 is dense in W%(G), the bounded operator L, on W?(G) satisfying (12)
is unique. ([

Theorem 4. Suppose that G has a locally Lipschitz boundary. Let f € Lo (H)
be a nonnegative function. Let u € C\,(0G) NCL(0G). If G is unbounded and m < 4
suppose moreover that n(0H) = 0 and f = 0 on 0H, where H is the unbounded
component of G. Then there is u € W12(G) a weak solution of the third problem
for the Laplace equation (10) with the boundary condition L = L,. Put A\ = fH. If
G1, ..., Gy are all components of G such that A\(0G;) = 0, then the general solution
of this problem has the form (6), where v is given by (7) and c¢; = 0 for G; unbounded
and c; is an arbitrary constant for G; bounded.

Proof. Let v be given by (7). Then N¢%v + % v\ = pu and v € C.(0G) by
Theorem 2 and [18], Theorem 1. According to Corollary 1 we have v € W12(G).
For fixed v € W12(Q) choose ¢, € 2 such that ¢, — v in WH2(G) as n — oo.
Then

L,v)= lim [ ¢,dpy= lim {/ chn-Voi/VdeJr/
n—oo G

onfUv dH}

:/VU-V%dem—i—/ vfUvdH.
€] G

% v is a weak solution of the third problem (10) with the boundary condition L = L,,.
If u has a form (6), where ¢; = 0 for G; unbounded, then u is a weak solution of this
third problem.

Let u € W2(G) be a weak solution of the third problem (10) with the boundary
condition L = L,,. Since u — % v € WH?(G) we have

O:/VU'V(Uf%I/)deﬁ* fu(u—?/l/)dH—/V%V~V(u—%u)d7{m
G G

oG

- fUv(u—Uv)dH
oG

= / |V(u7%y)|2de+/ flu—%v)*dH.
G oG

Since [ |V(u—%v)|* dH,m =0, [ flu—%v)* dH = 0, we have [ |V(u—%v)|?> dH.m, =
0. Since (u — % v) is locally constant on G, u has the form (6). O
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Theorem 5. Suppose that G has a locally Lipschitz boundary. Let f € Loo(H)
be a nonnegative function. Let L be a bounded linear functional on W%(G) and
p € C'(0G) be such that L(p) = [ pdp for each ¢ € 2. If u € WH3(G) is a weak
solution of the third problem for the Laplace equation (10) then u is continuously
extendible to the closure of G if and only if u € CL(9G).

Proof. Put A = fH. Since Nu + u\ = p, [16], Theorem 1 yields that
u € CH(OG). If u is continuously extendible to the closure of G then u € CL(OG) by
Theorem 2. Suppose now that p € C.(dG). If G is bounded put G = G, i = p.
If G is unbounded fix R > 0 such that G C Q(0) and put G = G N Qr(0), i =
n+ g—Z(Hm_l/aﬂR(O)), f =0 o0n 90g(0). Since V¢ < oo we have VE < 0. Since
Tess(NCU — %I) < % and (N2 — %I) is compact for each bounded open set H with
a smooth boundary (see [11], Theorem 4.1, Proposition 2.20, [29], Theorem 4.1), [15],
Theorem 2.3 yields that res(NC% — 11) < 1. Since NGu+u) = f, [16], Theorem 1
yields that i € C4(dG). If G is unbounded then (Qudn)(H,,_1/90r(0)) € C.(AG)
by [16], Remark 6 and therefore /i € C.(8G). Since u is a weak solution of the third
problem for the Laplace equation on G with the boundary condition L i

Au=0 in G,
ou

a—n—i—fu:Lﬂon oG,

Theorem 4 and Theorem 2 yield that u is continuously extendible to the closure
of G. 0

Definition. Suppose that G has a locally Lipschitz boundary. Let f € Lo (H)
be a nonnegative function. Let g € Ly(G) and let L be a bounded linear functional
on WH2(@G) such that L(p) = 0 for each p € 2(G). We say that u € WH2(G) is a
weak solution of the third problem for the Poisson equation

(13) Au=g on G,
@ +uf =L on J0G,
on
if
(14) / Vu-VUde—i—/ ufvdH = L(v) —/gvde
G oG G

for each v € W12(G).
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Lemma 5. Suppose that G has a locally Lipschitz boundary. Let f € Lo, (H) be
a nonnegative function. Let g € L,(R™), where p > m, be a compactly supported
function. If G is unbounded and m < 4 suppose moreover that

/ gdH,, =0.

Then % (gH.m) € CHR™) N WL2(R™). Put o = [n® - V% (gHm) + % (gH.m) fIH.
Then ¢ € C.(0G) and % (9H.m) is a weak solution solution of the third problem for
the Poisson equation

(15) Au=—g on G,
ou

8_n+uf:Lg on 0G.

Proof. % (gHm) € CH(R™) by [5], Theorem A.6 and Theorem A.11. An easy
calculation yields that % (gH.,) € WH2(R™). Since [n€ - V% (gHm)] € Loo(H), we
have [n®-V% (gH.n]H € CL(0G). Since % (gHm )\ € CL(OG) (see [22], Proposition 9),
we have ¢ € CL(0G).

Put

Cexp[-1/(1— |z|*)] for |z| <1,
p(z) =
0 for |z| > 1,
where C is chosen so that [¢ = 1. For e > 0 put ¢.(z) = ¢ ™p(xe). Then
Oe % U (gHm) — U (gHm), e * VU (gHm) — VU (¢Hm) locally uniformly as € \, 0
(see [30], Theorem 1.6.1, [27], §12). If v € Z then the Divergence Theorem (see [11],
p. 49) and [5], Theorem A.16 yield

/ VU (gHm) - VodH., + U (gHpm)fovdH = lim e * V(g * ho) - VodHm
G oG =0+ Jg

+ U (gHm)fvdH = lim [ V(e *g*hg) - VodH,, + U (gHm)fvdH
oG =0+ Jg lel

= lim {/ n® - V(pe * g * ho)vdH — / Ape * g * ho)vde} + U (gHm)fvdH
=0+ LJaa el Gle

= lim {/ vn® - e * V(ho * g)] dH + / (e * g)v de} + U (gHm) fodH
=0+ LJsa G G

= / vgdHy, + Ly(v).
G

Since Z is dense in W12(Q), % (gH.) is a weak solution of the third problem for
the Poisson equation (15). O
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Theorem 6. Suppose that G has a locally Lipschitz boundary. Let f € Loo(H)
be a nonnegative function. Let g € L,(R™), where p > m, be a compactly supported
function. Put A\ = fH. Denote by G1,...,Gy all bounded components of G such
that A(0G;) = 0. Let u € C.(0G) be such that

woG;) = /G gdHm

for j=1,... k. If G is unbounded and m < 4 suppose moreover that

/ gdHo =0,

u(aH):/gde,
H

MOH) = 0 for the unbounded component H of G. Then there is u € WY%(G), a
weak solution of the third problem for the Poisson equation (13) with the boundary
condition L = L,. The general form of this solution is

k
(16) u=Uv—UGHm) +>_ ¢iXa,,
j=1
where
(17) V:i(* T*‘”)"B
oy ey o’
(18) fi=p+ [ VU (gHm)IH + U (gHm) A,

1
a> —(VG+1+ sup %)\(:17))
2 z€dG

Proof. Put

Cexp[-1/(1— |z|*)] for |z| <1,
p(z) =
0 for |z| > 1,

where C is chosen so that [¢ = 1. For e > 0 put ¢.(z) = ¢ ™p(ze). Since
U (gHm) € CHR™) (see [5], Theorem A.6, Theorem A.11), ¢. * % (gHm) —
U (gHm), e * VU (gHm) — VU (gHm) locally uniformly as € N\, 0 (see [30], Theo-
rem 1.6.1, [27], §12). The Divergence Theorem (see [11], p. 49) and [5], Theorem A.16
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yield for j € {1,...,k}

F(0G,) = u(0G;) + | 1) V2 (g (0) ()

le

— u(0G,) + lim nS(y) - (e * VU (gHm))(y) dH(y)

=0+ Jog,

= u(0G;) + lim n%(y) - Viee * (ho * 9)](y) dH(y)

=0+ Jog;

= u(0G;) + lim n%(y) - Vlho = (< * 9)](y) dH(y)

=0+ Jog,

= p(0G;) + lim [ A%[(pe * g)Hm] dH,

E—>0+ G
J

= u(0G;) — lim (¢e * g) dHm

e—04

J

:M(aaj)—/ gdH,, = 0.

J

If G is unbounded and m < 4 then [5], Theorem A.16 and the Divergence Theorem
(see [11], p. 49) yield

[1(0H)

{ lim / nH09r 0 o« VU (gHum)] dHim 1
e=0+ Ja(HnQR(0))

_ / nQR<°><y>.v%<gHm><y>de1<y>}+u<aH>
QR (0)

lim nH02mO) 7[Ry  (pz * g)] dHm—1 + n(0H)

R—ooe—0+ Jo(HNQR(0))

lim A% (pe * )] dHp + p(0H)

R—o00e=0+ JHNQR(0)

— lim lim (pe % g)dHpm + p(0H)
R—o00e=0+ JHNQR(0)

7/ gdH, + p(0H) = 0.
H

According to Theorem 4,

k
%VJchjXG].

j=1

is a weak solution of the third problem for the Laplace equation (10) with the bound-

ary condition L = Lj. If u has the form (16) then Lemma 5 yields that u is a weak

solution of the third problem for the Poisson equation (13) with the boundary con-

dition L = L,,.
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Let now u € W12(G) be a weak solution of the third problem for the Poisson
equation (13) with the boundary condition L = L,,. Then

w=u—Uv+U(gHm)

is a weak solution of the third problem for the Laplace equation with the zero bound-
ary condition. According to Theorem 4 the function w is locally constant and van-
ishes on G\ (G1 U...UGYy). O

Theorem 7. Suppose that G has a locally Lipschitz boundary. Let f € Lo (H)
be a nonnegative function. Let g € La(G) N Ly 1oc(R™), where p > m. Let L be a
bounded linear functional on W'2(G) and p € C'(0G) be such that L(p) = [ dpu
for each ¢ € 9. If u € W12(G) is a weak solution of the third problem for the
Poisson equation (13) then u is continuously extendible to the closure of G if and
only if p € CL(0G).

Proof. Suppose first that G is bounded. Put A = fH. If H is a component
of G such that A(OH) =0 fix ¢ € ¥ such that ¢ = 1 on H and ¢ =0 on G\ H.
Since u is a weak solution of (13), we have

W(OH) = Le) = [ gt
H
If 1 € C.(OG) then u has the form (16) by Theorem 6. Since ji given by (18) is an
element of C.(0G) (see Lemma 5), Theorem 2 and [18], Theorem 1 yield that v given
by (17) is an element of C/(0G), too. Since % (gHm) € C1(R™) by [5], Theorem A.6
and Theorem A.11, u is continuously extendible to the closure of G.

Suppose now that u is continuously extendible to the closure of G. Put p =
—[nG VU (gH ) H—% (gH.m)A. Lemma 5 yields that u+% (gH.») is a weak solution
of the Neumann problem for the Laplace equation with the boundary condition
L — L,, which is continuosly extendible to the closure of G. Since (1 — ¢) € CL(OG)
by Theorem 5 and ¢ € C.(0G) by Lemma 5, we get u € CL(OG).

Suppose now that G is unbounded. Fix R > 0 such that Qz(0) N IG = 0. Fix
z € R™\ clG, r > 0 such that Qa,(2) NG = 0. Put

o() for x € GNQar(0),
o .
PR B S gdH,, for x € Q.(z),
(z) Hon (Q2(2)) GNQ2r(0) (
0 elsewhere.

Put G = G NQg(0). Define f = 0 on 9Nr(0). Put ¢ = [n% - V% (Hm) +
U (GHm)fIH, 0 = [nC - VU (GHm) + % (GHum) f][Hm—1/0G]. Lemma 5 yields that
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U (GHm) € CLHR™)NWL2(R™) is a weak solution solution of the third problems for
the Poisson equation

Aw=-g on G,
—+wf=L, on 90G

and

Aw=-g on G,
ow ~
n +wf =1L on 0G.
Choose ¢ € Z so that » = 1 on a neighbourhood of 9G, spt g C Qx(0). For

v e WH2(Q) define

3a) = v(z)p(z) for z € G,
o for z € G\ G,

L) = 1)~ L) + L@+ [ o) - V) s (0)

Choose ¢ € Z so that ¢ = 1 on a neighbourhood of cl12z(0), spt ¢ C Q2r(0). Since
u~+ % (GHm) is harmonic on G N Q2r(0)] we have for v € 2

/Vu-Vvde+/~ ufvdH = —/ VU (M) - Vo dHp — | U (§Hm) fodH

G oG G oG

+ / Vi + % (§Hom)] - V(pv) dMo — / Viu+ % (§Hm)] - V(pv) dHon
G Q2r(0)\Qr(0)

+/ [u+ % (gHm)|fovdH = —Ls(v) — / gvdHm, + Ly(v) + L(pv)
oG G

y B i [
+/(99R(0)v(y>§ Vu+ % (GHm)](y) dHm-1(y) = L(v) /@g dH,,..

Since Z is dense in W12(G), u is a weak solution of the third problem for the Poisson

equation

If u is continuously extendible to clG then [yR™! - Vu(y)]|[Hm_1/00r(0)] + u —
6+ 0 € C(BG). Since yR™' - Vu(y) € Loo(Hm_1/0Qr(0)) we have [yR™" -
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Vu(y)|[Hm-1/00r(0)] € CL(0Qr(0)). Therefore p € CL(OG), because g € CL(OG),

0 € CL(0(G)) by Lemma 5.

Let now p € CL(OG). According to Lemma 5 we have ¢ € C.L(0G), o €

C.(3(@)). Since yR™' - Vu(y) € Loo(Hm_1/0Qr(0)) we have p — g+ 0+ [yR~" -
Vu(y)|[Hm-1/00r(0)] € C.(OG). Therefore u is continuously extendible to the
closure of G. Since R > dist(0,dG) was arbitrary, u is continuously extendible to
the closure of G. O
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