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Abstract. A necessary and sufficient condition for the continuous extendibility of a solu-
tion of the third problem for the Laplace equation is given.
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For x, y ∈ � m , m > 2, denote

hx(y) =

{
(m− 2)−1A−1|x− y|2−m for x 6= y,

∞ for x = y,

where A is the area of the unit sphere in � m . For a finite real Borel measure ν denote

U ν(x) =
∫
�

m

hx(y) dν(y),

the single layer potential corresponding to ν, for each x for which this integral has
sense.

Suppose that G ⊂ � m (m > 2) is an open set with a non-void compact bound-
ary ∂G such that ∂G = ∂( � m \ G). Suppose moreover that for each x ∈ ∂G there

exists

dG(x) = lim
r↘0

Hm(G ∩ Ωr(x))
Hm(Ωr(x))

> 0.

Here Ωr(x) is the open ball with centre x and diameter r, andHk is the k-dimensional
Hausdorff measure normalized so that Hk is the Lebesgue measure in � k .
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Fix a nonnegative element λ of C ′(∂G) (= the Banach space of all finite signed
Borel measures with support in ∂G, with the total variation as the norm) and suppose
that the single layer potential U λ is finite and continuous on ∂G. It was shown in [23]
that U λ is finite and continuous on ∂G if and only if

lim
r→0+

sup
y∈∂G

∫

Ωr(y)

hy(x) dλ(x) = 0.

According to [11], Lemma 2.18 this is true if there are constants α > m − 2 and
k > 0 such that λ(Ωr(x)) 6 krα for all x ∈ � m and all r > 0.
If h is a harmonic function on G such that

∫

H

|∇h| dHm <∞

for all bounded open subsets H of G we define the weak normal derivative NGh of h

as the distribution 〈
NGh, ϕ

〉
=

∫

G

∇ϕ · ∇h dHm

for ϕ ∈ D (= the space of all compactly supported infinitely differentiable functions
in � m ).
If H ⊂ � m is an open set with a compact smooth boundary, u ∈ C1(clH) is a

harmonic function on H and

∂u

∂n
+ fu = g on ∂H

where f, g ∈ C(∂H) (= the space of all finite continuous functions on ∂H equipped
with the maximum norm) and n is the exterior unit normal of H , then for ϕ ∈ D

we have

(1)
∫

∂H

ϕg dHm−1 =
∫

H

∇ϕ · ∇u dHm +
∫

∂H

ϕfu dHm−1.

If we denote by H the restriction of Hm−1 to ∂H then (1) has the form

(2) NHu+ ufH = gH.

The formula (2) motivates our definition of the solution of the third problem for

the Laplace equation

∆u = 0 in G,(3)

NGu+ uλ = µ,

where µ ∈ C′(∂G) (compare [11], [22]).
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Let µ ∈ C′(∂G). Now we formulate the third problem for the Laplace equation (3)
as follows: Find a function u ∈ L1(λ) on clG, the closure of G, harmonic on G,
for which |∇u| is integrable over all bounded open subsets of G, such that for λ-a.a.
x ∈ ∂G there is a set H with dH(x) = 0 and

(4) lim
y→x

y∈G\H
u(y) = u(x),

and such that NGu+ uλ = µ.

Suppose in this paragraph that G has a locally Lipschitz boundary and u ∈
W 1,2(G). It is well-known that we can even suppose that u ∈ W 1,2( � m ) (see [30],
Remark 2.52). We can choose such a representation of u that u is approximately

continuous at Hm−1-a.a. points of � m (see [30], Theorem 3.3.3, Theorem 2.6.16 and
Remark 3.3.5). The restriction of u to ∂G is the trace of u (see [30], p. 190). If H
denotes the restriction of Hm−1 to ∂G, then u ∈ L2(H) (see [19], Theorem 1.2). If
f is a nonnegative bounded Baire function on ∂G and g ∈ L2(H), then u is called a
weak solution of the problem ∆u = 0 in G, ∂u/∂n+ fu = g on ∂G if

∫

∂G

vg dHm−1 =
∫

G

∇v · ∇u dHm +
∫

∂G

fvu dHm−1

for each v ∈ W 1,2(G) (compare [19], Example 2.12). Put λ = fH, µ = gH. Using
Hölder’s inequality we see that |∇u| is integrable over all bounded open subsets
of G. Since u is approximately continuous at Hm−1-a.a. points of � m and λ is
absolutely continuous with respect to Hm−1, we obtain that for λ-a.a. x ∈ ∂G there
is a set H with dH(x) = 0 such that (4) holds. Since D ⊂ W 1,2(G), u is a solution
of (3). Therefore, our definition is a generalization of the weak solution of the third

problem for the Laplace equation in the Sobolev space W 1,2(G).
It is usual to look for a solution u in the form of the single layer potential U ν,

where ν ∈ C′(∂G). It was shown in [16] that U ν has all the properties of a solution
of the third problem with some boundary condition, but our “continuity” on the

boundary is replaced by the fine continuity at λ-a.a. points of the boundary. If U ν

is finely continuous at x ∈ ∂G with respect to clG then there is H with dH(x) = 0
such that

lim
y→x

y∈G\H
u(y) = u(x)

(see [10], Theorem 10.15, Corollary 10.5). If U ν is a solution of the third problem
in the sense of [16] then it is a solution of the third problem in our sense.
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The operator τ : ν 7→ NGU ν + (U ν)λ is a bounded linear operator on C ′(∂G) if
and only if V G <∞, where

V G = sup
x∈∂G

vG(x),

vG(x) = sup
{∫

G

∇ϕ · ∇hx dHm ; ϕ ∈ D , |ϕ| 6 1, sptϕ ⊂ � m − {x}
}

(see [11]). There are more geometrical characterizations of vG(x) in [11] which ensure

that V G < ∞ for G convex or for G with ∂G ⊂
k⋃

i=1

Li, where Li are (m − 1)-

dimensional Ljapunov surfaces, i.e., of class C1+α.
If z ∈ � m and θ is a unit vector such that the symmetric difference of G and

the half-space {x ∈ � m ; (x − z) · θ < 0} has m-dimensional density zero at z then
nG(z) = θ is termed the exterior normal of G at z in Federer’s sense. If there is no

exterior normal of G at z in this sense, we denote by nG(z) the zero vector in � m .
The set {y ∈ � m ; |nG(y)| > 0} is called the reduced boundary of G and will be
denoted by ∂̂G.

If G has a finite perimeter (which is fulfilled if V G < ∞) then Hm−1(∂̂G) < ∞
and

vG(x) =
∫
�
∂G

|nG(y) · ∇hx(y)| dHm−1(y)

for each x ∈ � m . Throughout the paper we shall assume that V G <∞.
If L is a bounded linear operator on a Banach space X we denote by ‖L‖ess

the essential norm of L, i.e. the distance of L from the space of all compact linear
operators on X . The essential spectral radius of L is defined by

ressL = lim
n→∞

(‖Ln‖ess)1/n.

Theorem 1. Let ress(τ − 1
2I) <

1
2 , where I is the identity operator. Then G has

finitely many components G1, . . . , Gn and clGj ∩ clGk = ∅ for j 6= k. If µ ∈ C′(∂G)
then there is a harmonic function u on G, which is a solution of the third problem

NGu+ uλ = µ,

if and only if µ ∈ C′0(∂G) (= the space of such ν ∈ C ′(∂G) that ν(∂Gk) = 0 for each
bounded Gk for which λ(∂Gk) = 0). Moreover, if µ ∈ C ′0(∂G) then there is a solution
of this problem in the form of the single layer potential U ν, where ν ∈ C ′0(∂G).
���������

. According to [18], Lemma 3 the set G has finitely many components

G1, . . . , Gn and clGj ∩ clGk = ∅ for j 6= k. Let u be a solution of the third problem

NGu+ uλ = µ.
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If Gk is bounded and λ(∂Gk) = 0 choose ϕ ∈ D such that ϕ = 1 on Gk and ϕ = 0
on G \Gk. Then

µ(∂Gk) = 〈µ, ϕ〉 =
〈
NGu+ uλ, ϕ

〉
= 0.

On the other hand, if µ ∈ C′0(∂G) then [16], Theorem 1 yields that there is a
solution of this problem in the form of the single layer potential U ν, where ν ∈
C′0(∂G). �

Remark. It is well-known that the condition ress(τ − 1
2I) <

1
2 is fulfilled for sets

with a smooth boundary (of class C1+α) (see [12]) and for convex sets (see [20]).
R. S. Angell, R. E. Kleinman, J. Král and W.L. Wendland proved that rectangu-

lar domains (i.e. formed from rectangular parallelepipeds) in � 3 have this property
(see [3], [13]). A. Rathsfeld showed in [25], [26] that polyhedral cones in � 3 have

this property. (By a polyhedral cone in � 3 we mean an open set Ω whose boundary
is locally a hypersurface (i.e. every point of ∂Ω has a neighbourhood in ∂Ω which
is homeomorphic to � 2 ) and ∂Ω is formed by a finite number of plane angles. By
a polyhedral open set with bounded boundary in � 3 we mean an open set Ω whose
boundary is locally a hypersurface and ∂Ω is formed by a finite number of poly-
gons.) N.V. Grachev and V.G. Maz’ya obtained independently an analogous result

for polyhedral open sets with bounded boundary in � 3 (see [8]). (Let us note that
there is a polyhedral set in � 3 which has not a locally Lipschitz boundary.) In [15] it

was shown that the condition ress(τ − 1
2I) <

1
2 has a local character. As a conclusion

we obtain that this condition is fullfiled for G ⊂ � 3 such that for each x ∈ ∂G there
are r(x) > 0, a domain Dx which is polyhedral or smooth or convex or a comple-
ment of a convex domain and a diffeomorphism ψx : U (x; r(x)) → � 3 of class C1+α,

where α > 0, such that ψx(G∩U (x; r(x))) = Dx∩ψx(U (x; r(x))). V. G. Maz’ya and
N.V. Grachev proved this condition for several types of sets with “piecewise-smooth”

boundary in the general Euclidean space (see [6], [7], [9]).

In the rest of paper we will suppose that ress(τ − 1
2 I) <

1
2 . Since τ − NGU is

a compact operator (see [16], Remark 5), this condition is equivalent to the condi-

tion ress(NGU − 1
2 I) <

1
2 . Denote by H the restriction of Hm−1 onto ∂G. Then

H( � m ) <∞ (see [17], Lemma 2).

Notation. C′c(∂G) will stand for the subspace of those µ ∈ C ′(∂G) for which there
exists a finite continuous function Ucµ on � m coinciding with U µ on � m \ ∂G. It
was shown in [24] that if ν ∈ C ′(∂G) and the restriction of U ν to ∂G is finite and
continuous then U ν is finite and continuous in � m and ν ∈ C′c(∂G). If µ = fH,
where f ∈ Lp(H), p > m− 1 then µ ∈ C′c(∂G) (see [16], Remark 6).

Remark. Let µ ∈ C′(∂G). According to [18], Theorem 1 the following assertions
are equivalent:
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1) µ ∈ C′c(∂G).
2) There is a finite continuous extension of U µ from G onto clG.
3) Put K = {x ∈ ∂G ; U |µ|(x) = ∞}. Then there is a finite continuous function f
on ∂G such that U µ = f on ∂G \K.

Lemma 1. If H is a bounded component of G then there is ν ∈ C ′c(∂G) such
that U ν = 1 on H and U ν = 0 on G \H .
���������

. Denote by G1, . . . , Gn all bounded components of G. If σ ∈ KerNGU

then σ ∈ C′c(∂G) andU σ is locally constant onG by [17], Lemma 4, Lemma 12. Since

U σ(x) → 0 as |x| → ∞, the function U σ vanishes on the unbounded component
of G. If U σ = 0 in G then Ucσ is a harmonic function in � m \ ∂G which vanishes
on ∂G and converges to 0 at infinity, hence U σ = Ucσ = 0 in � m \ ∂G. Since
Hm(∂G) = 0 (see [17], Lemma 2) we obtain σ = 0 by [14], Theorem 1.12. Since
NGU is a Fredholm operator with index 0 and the codimension of the range of
NGU is equal to n by [17], Theorem 1, the dimension of KerNGU is equal to n.

Therefore there is ν ∈ KerNGU ⊂ C′c(∂G) such that U ν = 1 on H and U ν = 0 on
G \H . �

Lemma 2. Let K ⊂ � m be compact, u be a harmonic function on � m \K, and
x0 ∈ K. Denote U = {(x− x0)/|x− x0|2 ; x ∈ � m \K} ∪ {0}. Then there are a real
number a, a function v harmonic on U with v(0) = 0 and a function w harmonic
on � m such that

(5) u(x) = w(x) + ahx0 + |x− x0|2−mv((x − x0)/|x− x0|2)

in � m \K. This decomposition is unique.
���������

. We can suppose that x0 = 0. According to [1], Corollary 2.3 there is a
unique function w harmonic on � m such that u(x)−w(x) = O(|x|2−m) as |x| → ∞.
Denote

ṽ(x) = |x|2−m[u(x/|x|2)− w(x/|x|2)] for x ∈ U \ {0}.
Then ṽ, the Kelvin transfomation of the function u− w, is a harmonic function on

U \ {0} (see [5], Theorem B.15). Since U is a neighbourhood of 0, ṽ is bounded on
U ∩ Ωr(0) \ {0} for some r > 0, so there is a harmonic extension v̂ of ṽ onto U (see
for example [2]). Put a = v̂(0), v(x) = v̂(x) − a. An easy calculation yields (5). �

Notation. Let α = (α1, . . . , αm) be a multiindex. Denote |α| = α1 + . . . + αm

the length of α. For a function w denote

Dαw(x) =
∂|α|w(x)

∂xα1
1 . . . ∂xαm

m
.
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If n is a positive integer denote ∇nw(x) = {Dαw(x) ; |α| = n},

|∇nw(x)| =
[ ∑

|α|=n

|Dαw(x)|2
] 1

2

.

Further denote ∇0w = w.

Lemma 3. Let x0 ∈ K ⊂ � m be compact, u be a harmonic function on � m \K.
Let n be nonnegetive integer. Then the following assertions are equivalent:

a) u(x) = o(|x|n) as |x| → ∞.
b) u(x) = P (x)+ahx0 + |x−x0|2−mv((x−x0)/|x−x0|2), where a is a real number,

v is a harmonic function on a neighbourhood of 0 with v(0) = 0, P ≡ 0 for n = 0
and P is a harmonic polynomial of degree smaller than n for n > 0.

c) There are R > 0, 1 6 p <∞ such that |∇nu| ∈ Lp( � m \ ΩR(x0)).
d) There is R > 0 such that |∇ku| ∈ Lp( � m \ ΩR(x0)) for each integer k > n and

for each p > m/(m+ k − 2).
���������

. The implications b)⇒ d)⇒ c), b)⇒ a) are evident.
a) ⇒ b) Denote U = {(x − x0)/|x − x0|2 ; x ∈ � m \ K} ∪ {0}. Then there

are a real number a, a function v harmonic on U with v(0) = 0 and a function w
harmonic on � m such that u(x) = w(x)+ahx0(x)+ |x−x0 |2−mv((x−x0)/|x−x0|2)
in � m \K. Then w(x) = o(|x|n) as |x| → ∞. Therefore there is a constant c such
that |w(x)| 6 c|x|n for each x ∈ � m . If α = (α1, . . . , αm) is a multiindex with
the length |α| greater than n then [5], Theorem B.9 yields that there is a positive
constant cα such that

sup
|x|6r

|Dαw(x)| 6 cαr
−|α| sup

|x|62r

|w(x)| 6 cαc2nrn−|α|

for each r > 0. Putting r → ∞ we get Dαw ≡ 0. Therefore w is a polynomial of
degree at most n (see for example [28], Chapter IV, Theorem 2.16). Since w(x) =
o(|x|n) as |x| → ∞, w is a polynomial of degree smaller than n for n > 0 and w ≡ 0
for n = 0.
c) ⇒ b) For 1 < p see [28], Chapter IV, Lemma 4.1, Lemma 4.2. Let now p = 1.

Denote U = {(x−x0)/|x−x0|2 ; x ∈ � m \K}∪{0}. Then there are a real number a, a
function v harmonic on U with v(0) = 0 and a function w harmonic on � m such that
u(x) = w(x)+ahx0 +|x−x0|2−mv((x−x0)/|x−x0|2) in � m \K. Let α = (α1, . . . , αm)
be a multiindex with the length |α| = n. We will show that Dαw ≡ 0. Suppose that
|w(y)| > 0. Fix % > 0 such that ΩR(0) ⊂ Ω%(y). It is easy to see that there is a
constant b such that

|Dα[ahx0(x) + |x− x0|2−mv((x − x0)/|x− x0|2)]| 6 b|x− y|2−m
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for x ∈ � m \ Ω%(y). Using mean-value property of the harmonic function w we get

∫
�

m\ΩR(0)

|Dαu| dHm >
∫ ∞

%

[∣∣∣∣
∫

∂Ωt(y)

Dαw dHm−1

∣∣∣∣−
∫

∂Ωt(y)

bt2−m dHm−1

]
dt

=
∫ ∞

%

[|w(y)|tm−1 − bt]Hm−1(∂Ω1(0)) dt = ∞,

which contradicts the fact that Dαu ∈ L1( � m \ ΩR(0)). Since Dαw ≡ 0 for each
multiindex α with |α| > n, w is a polynomial of degree smaller than n for n > 0
(see [28], Chapter IV, Theorem 2.16) and w ≡ 0 for n = 0. �

Notation. For p > 1 denote by W 1,p(G) the collection of all functions f ∈ Lp(G)
the distributional gradient of which belongs to [Lp(G)]m.

Theorem 2. Denote by G1, . . . , Gk all components of G such that λ(∂Gj) = 0.
If µ ∈ C′0(∂G) then there is a solution of the third problem

NGu+ uλ = µ,

which is finite and continuous up to the boundary, if and only if µ ∈ C ′c(∂G). If G is
bounded then the general form of this solution is

u = U ν +
k∑

j=1

cjχGj ,(6)

where

ν =
∞∑

n=0

(
−τ − αI

α

)n µ

α
,(7)

α >
1
2

(
V G + 1 + sup

x∈∂G
U λ(x)

)
,

χGj are characteristic functions of Gj , and cj are arbitrary constants. If G is un-

bounded and Gj are bounded for j = 1, . . . , k then (6) is a general form of solutions
continuously extendible to the closure of G for which there are R > 0, p > 1 such
that u ∈ Lp(G \ ΩR(0)). If G is unbounded and there is j ∈ {1, . . . , k} such that
Gj is unbounded, then (6) is a general form of solutions continuously extendible to
the closure of G for which there are R > 0, p > 1 such that |∇u| ∈ Lp(G \ ΩR(0)).
���������

. If µ ∈ C′c(∂G) then [16], Theorem 1, Theorem 2 yield that the function u
given by (6) is a solution of the third problem (3), which is finite and continuous up
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to the boundary. If G is unbounded then |∇u| ∈ Lq(G\ΩR(0)) for q > 2; if moreover
Gj are bounded for j = 1, . . . , k then u ∈ W 1,q(G \ ΩR(0)) for q > 4.
Let now v be a solution of the third problem (3), which is finite and continuous

up to the boundary. Then v is a solution of the Neumann problem in the sense of

distributions with the boundary condition µ − vλ. Since µ − vλ ∈ C ′c(∂G) by [18],
Theorem 2 and vλ = v+λ−v−λ ∈ C′c(∂G) by [22], Proposition 6, we have µ ∈ C ′c(∂G).
If G is unbounded and there is j ∈ {1, . . . , k} such that Gj is unbounded, suppose

that there are R > 0, p > 1 such that |∇v| ∈ Lp(G \ΩR(0)). According to Lemma 3
we have |∇v| ∈ Lq(G \ΩR(0)) for all q > 2. If G is unbounded and Gj are bounded
for j = 1, . . . , k suppose that there are R > 0, p > 1 such that v ∈ Lp(G \ ΩR(0)).
According to Lemma 3 we have v ∈W 1,q(G \ ΩR(0)) for all q > 4.
Put w = u − v. Then w is a solution of the Neumann problem in the sense

of distributions with the boundary condition −wλ, which is continuous up to the
boundary. Let G1, . . . , Gn be all components of G. According to [18], Theorem 2,

Theorem 1 there are % ∈ C ′c(∂G) and constants d1, . . . , dn such that

w = U %+
n∑

j=1

djχGj .

If j > k and Gj is unbounded then dj = 0, because w ∈ W 1,4(G \ ΩR(0)). If
G1, . . . , Gk are bounded then there is σ ∈ C ′c(∂G) such that w = U σ by Lemma 1.

Since τσ = 0, w is locally constant on G and w = 0 on Gj for j > k by [16],
Lemma 11.

Suppose now that there is i 6 k such that Gi is unbounded. Put H = G \ Gi.
Since w is a solution of the third problemNHw+wλ = 0 on H , which is continuously
extendible to clH , w is locally constant on H and w = 0 on Gj for j > k. Since w is
a solution of the Neumann problem on Gi with the zero boundary condition (in the

sense of distributions), which is continuously extendible to clGi, w is constant on Gi

by [18], Theorem 2. �

Remark. Put G = � m \ cl Ω1(0), λ = H, u(x) = |x|2−m + m − 3. Then u is
a nonconstant harmonic function in G, continuous on the closure of G, |∇u| ∈
L2(G) (compare Lemma 3) and NGu− uλ = 0. Therefore we see that the condition
u ∈ Lp(G \ ΩR(0)) in Theorem 2 cannot be substituted by the condition |∇u| ∈
Lp(G \ ΩR(0)) (compare [18], Theorem 2).

Corollary 1. Let µ ∈ C′(∂G) and let v be a solution of the third problem for
the Laplace equation in the sense of distributions with the boundary condition µ.

Suppose that v is continuously extendible to the closure of G. If |∇v| ∈ Lp(G\ΩR(0))
for some R > 0, p > 1 then |∇v| ∈ L2(G). If v ∈ Lp(G \ ΩR(0)) for some R > 0,
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p > 1 and m > 4 then v ∈ W 1,2(G). If v ∈ Lp(G \ ΩR(0)) for some R > 0, p > 1,
m 6 4 and λ does not charge the unbounded component of clG then v ∈W 1,2(G) if
and only if µ(∂H) = 0 for the unbounded component H of clG.
���������

. If G is bounded then this assertion is a consequence of Theorem 2 and
[18], Lemma 8. Suppose now that G is unbounded. Let u is given by (6). According

to Lemma 3 we have |∇u|, |∇v| ∈ Lq(G \ ΩR(0)) for all q > 2. Put w = v − u.
Then w is a solution of the Neumann problem NGw = −wλ, which is continuously
extendible to the closure of G. Let G1, . . . , Gn be all components of G. According
to [18], Theorem 2, Theorem 1 there are % ∈ C ′c(∂G) and constants d1, . . . , dn such

that

w = U %+
n∑

j=1

djχGj .

Since |∇u|, |∇w| ∈ L2(G) by [16], Theorem 1, Theorem 2, [18], Lemma 7, we have
|∇v| ∈ L2(G). Suppose now that v ∈ Lp(G \ ΩR(0)) for some R > 0, p > 1. Since
v is continuous on clG, v ∈ L2(Gj) for each bounded component Gj of G. Denote

by G̃ the unbounded component of G, λ̃ the restriction of λ to cl G̃, µ̃ the restriction
of µ to cl G̃. Then N G̃v + vλ̃ = µ̃. Since V G̃ < ∞, ress(N G̃U − 1

2 ) < 1
2 (see [15],

Theorem 2.3), Theorem 2 yields that v = U ν̃ on G̃, where ν̃ ∈ C′c(∂G̃). Since v is
continuous on the closure of G, we have v ∈ L2(G) for m > 4. Let now λ̃ = 0.
According to [17], Theorem 1 we can choose

ν̃ = µ̃+
∞∑

j=0

(I − 2N G̃U )j(I −N G̃U )2µ̃.

Since ν̃( � m ) = 0 if and only if µ̃( � m ) = 0 (see [17], Lemma 9), v ∈ W 1,2(G̃) if and
only if µ̃( � m ) = 0 by [18], Lemma 8. �

Theorem 3. Let G be an unbounded domain, µ ∈ C ′c(∂G) ∩ C′0(∂G). Then the
general form of a solution of the third problem (3), which is finite and continuous
up to the boundary, is

(8) u = U ν + w,

where w is a harmonic function in � m and

ν =
∞∑

n=0

(
− τ − αI

α

)n 1
α

(
µ− ∂w

∂n
H− wλ

)
,(9)

α >
1
2

(
V G + 1 + sup

x∈∂G
U λ(x)

)
.
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Let k be a positive integer. Then u is a solution of the third problem (3), which is

finite and continuous up to the boundary and u(x) = O(|x|k−1) as |x| → ∞, if and
only if u is given by (8), where ν is given by (9) and w is a harmonic polynomial of
degree smaller than k.

���������
. If u is given by (8) then u is a solution of the third problem (3), which

is finite and continuous up to the boundary (see Theorem 2). If w is a harmonic
polynomial of degree smaller than k then u(x) = O(|x|k−1) as |x| → ∞ by Lemma 3.
Let now u be a solution of the third problem (3) which is finite and continuous up

to the boundary. According to Lemma 2 there are a function v harmonic on G and a

function w harmonic on � m such that u = w+v, v(x) = o(1) as |x| → ∞. According
to Lemma 3 there are p > 1 and R > 0 such that v ∈ Lp( � m \ ΩR(0)). Since
v is a solution of the third problem in the sense of distributions with the boundary
condition µ − (∂w/∂n)H − wλ, which is finite and continuous up to the boundary,

Theorem 2 yields that v = U ν, where ν is given by (9). If u(x) = O(|x|k−1) as
|x| → ∞ then w(x) = O(|x|k−1) as |x| → ∞ and w is a harmonic polynomial of

degree smaller than k by Lemma 3 and Lemma 2. �

Definition. Suppose that G has a locally Lipschitz boundary. Let f ∈ L∞(H)
be a nonnegative function. Let L be a bounded linear functional on W 1,2(G) such
that L(ϕ) = 0 for each ϕ ∈ D(G) = {ϕ ∈ D ; sptϕ ⊂ G}. We say that u ∈W 1,2(G)
is a weak solution of the third problem

∆u = 0 on G,(10)

∂u

∂n
+ uf = L on ∂G,

if

(11)
∫

G

∇u · ∇v dHm +
∫

∂G

ufv dH = L(v)

for each v ∈ W 1,2(G).

Lemma 4. Suppose that G has a locally Lipschitz boundary, µ ∈ C ′c(∂G). Then
there is a unique bounded linear functional Lµ on W 1,2(G) such that

(12) Lµ(ϕ) =
∫

∂G

ϕ dµ

for each ϕ ∈ D .
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���������
. Fix a real number c such that µ(∂G)−cH(∂G) = 0. Since cH ∈ C ′c(∂G)

there is a bounded linear functional L on W 1,2(G) such that

L(ϕ) =
∫

∂G

ϕ d(µ− cH)

for each ϕ ∈ D (see [18], Lemma 9). If we define Lµ(v) = L(v) + c
∫
v dH for

v ∈ W 1,2(G), then Lµ is a bounded linear operator on W 1,2(G) satisfying (12).
Since D is dense in W 1,2(G), the bounded operator Lµ on W 1,2(G) satisfying (12)
is unique. �

Theorem 4. Suppose that G has a locally Lipschitz boundary. Let f ∈ L∞(H)
be a nonnegative function. Let µ ∈ C ′0(∂G) ∩ C′c(∂G). If G is unbounded and m 6 4
suppose moreover that µ(∂H) = 0 and f = 0 on ∂H , where H is the unbounded
component of G. Then there is u ∈ W 1,2(G) a weak solution of the third problem
for the Laplace equation (10) with the boundary condition L ≡ Lµ. Put λ = fH. If
G1, . . . , Gk are all components of G such that λ(∂Gj) = 0, then the general solution
of this problem has the form (6), where ν is given by (7) and cj = 0 for Gj unbounded

and cj is an arbitrary constant for Gj bounded.
���������

. Let ν be given by (7). Then NGU ν + U νλ = µ and ν ∈ C ′c(∂G) by
Theorem 2 and [18], Theorem 1. According to Corollary 1 we have U ν ∈ W 1,2(G).
For fixed v ∈ W 1,2(G) choose ϕn ∈ D such that ϕn → v in W 1,2(G) as n → ∞.
Then

Lµ(v) = lim
n→∞

∫
ϕn dµ = lim

n→∞

[∫

G

∇ϕn · ∇U ν dHm +
∫

∂G

ϕnfUcν dH
]

=
∫

G

∇v · ∇U ν dHm +
∫

∂G

vfUcν dH.

U ν is a weak solution of the third problem (10) with the boundary condition L ≡ Lµ.

If u has a form (6), where cj = 0 for Gj unbounded, then u is a weak solution of this
third problem.

Let u ∈ W 1,2(G) be a weak solution of the third problem (10) with the boundary
condition L ≡ Lµ. Since u−U ν ∈W 1,2(G) we have

0 =
∫

G

∇u · ∇(u−U ν) dHm +
∫

∂G

fu(u−U ν) dH−
∫

G

∇U ν · ∇(u−U ν) dHm

−
∫

∂G

fU ν(u−U ν) dH

=
∫

G

|∇(u−U ν)|2 dHm +
∫

∂G

f(u−U ν)2 dH.

Since
∫
|∇(u−U ν)|2 dHm > 0,

∫
f(u−U ν)2 dH > 0, we have

∫
|∇(u−U ν)|2 dHm =

0. Since (u−U ν) is locally constant on G, u has the form (6). �
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Theorem 5. Suppose that G has a locally Lipschitz boundary. Let f ∈ L∞(H)
be a nonnegative function. Let L be a bounded linear functional on W 1,2(G) and
µ ∈ C′(∂G) be such that L(ϕ) =

∫
ϕ dµ for each ϕ ∈ D . If u ∈ W 1,2(G) is a weak

solution of the third problem for the Laplace equation (10) then u is continuously

extendible to the closure of G if and only if µ ∈ C ′c(∂G).

���������
. Put λ = fH. Since NGu + uλ = µ, [16], Theorem 1 yields that

µ ∈ C′0(∂G). If u is continuously extendible to the closure of G then µ ∈ C ′c(∂G) by
Theorem 2. Suppose now that µ ∈ C ′c(∂G). If G is bounded put G̃ = G, µ̃ = µ.

If G is unbounded fix R > 0 such that ∂G ⊂ ΩR(0) and put G̃ = G ∩ ΩR(0), µ̃ =
µ+ ∂u

∂n (Hm−1/∂ΩR(0)), f = 0 on ∂ΩR(0). Since V G <∞ we have V G̃ < ∞. Since
ress(NGU − 1

2I) <
1
2 and (NHU − 1

2I) is compact for each bounded open set H with
a smooth boundary (see [11], Theorem 4.1, Proposition 2.20, [29], Theorem 4.1), [15],

Theorem 2.3 yields that ress(N G̃U − 1
2I) <

1
2 . Since N

G̃u+uλ = µ̃, [16], Theorem 1
yields that µ̃ ∈ C′0(∂G). If G is unbounded then (∂u∂n)(Hm−1/∂ΩR(0)) ∈ C′c(∂G̃)
by [16], Remark 6 and therefore µ̃ ∈ C ′c(∂G̃). Since u is a weak solution of the third
problem for the Laplace equation on G̃ with the boundary condition Lµ̃

∆u = 0 in G̃,

∂u

∂n
+ fu = Lµ̃ on ∂G̃,

Theorem 4 and Theorem 2 yield that u is continuously extendible to the closure

of G̃. �

Definition. Suppose that G has a locally Lipschitz boundary. Let f ∈ L∞(H)
be a nonnegative function. Let g ∈ L2(G) and let L be a bounded linear functional
on W 1,2(G) such that L(ϕ) = 0 for each ϕ ∈ D(G). We say that u ∈ W 1,2(G) is a
weak solution of the third problem for the Poisson equation

∆u = g on G,(13)

∂u

∂n
+ uf = L on ∂G,

if

(14)
∫

G

∇u · ∇v dHm +
∫

∂G

ufv dH = L(v)−
∫

G

gv dHm

for each v ∈ W 1,2(G).

681



Lemma 5. Suppose that G has a locally Lipschitz boundary. Let f ∈ L∞(H) be
a nonnegative function. Let g ∈ Lp( � m ), where p > m, be a compactly supported

function. If G is unbounded and m 6 4 suppose moreover that

∫
�

m

g dHm = 0.

Then U (gHm) ∈ C1( � m ) ∩W 1,2( � m ). Put % ≡ [nG · ∇U (gHm) + U (gHm)f ]H.
Then % ∈ C′c(∂G) and U (gHm) is a weak solution solution of the third problem for
the Poisson equation

∆u = −g on G,(15)

∂u

∂n
+ uf = L% on ∂G.

���������
. U (gHm) ∈ C1( � m ) by [5], Theorem A.6 and Theorem A.11. An easy

calculation yields that U (gHm) ∈ W 1,2( � m ). Since [nG · ∇U (gHm)] ∈ L∞(H), we
have [nG·∇U (gHm]H ∈ C′c(∂G). SinceU (gHm)λ ∈ C′c(∂G) (see [22], Proposition 9),
we have % ∈ C′c(∂G).
Put

ϕ(x) =

{
C exp[−1/(1− |x|2)] for |x| < 1,

0 for |x| > 1,

where C is chosen so that
∫
ϕ = 1. For ε > 0 put ϕε(x) = ε−mϕ(xε). Then

ϕε ∗U (gHm) → U (gHm), ϕε ∗∇U (gHm) → ∇U (gHm) locally uniformly as ε↘ 0
(see [30], Theorem 1.6.1, [27], §12). If v ∈ D then the Divergence Theorem (see [11],
p. 49) and [5], Theorem A.16 yield

∫

G

∇U (gHm) · ∇v dHm +
∫

∂G

U (gHm)fv dH = lim
ε→0+

∫

G

ϕε ∗ ∇(g ∗ h0) · ∇v dHm

+
∫

∂G

U (gHm)fv dH = lim
ε→0+

∫

G

∇(ϕε ∗ g ∗ h0) · ∇v dHm +
∫

∂G

U (gHm)fv dH

= lim
ε→0+

{∫

∂G

nG · ∇(ϕε ∗ g ∗ h0)v dH−
∫

G

∆(ϕε ∗ g ∗ h0)v dHm

}
+

∫

∂G

U (gHm)fv dH

= lim
ε→0+

{∫

∂G

vnG · [ϕε ∗ ∇(h0 ∗ g)] dH +
∫

G

(ϕε ∗ g)v dHm

}
+

∫

∂G

U (gHm)fv dH

=
∫

G

vg dHm + L%(v).

Since D is dense in W 1,2(G), U (gHm) is a weak solution of the third problem for
the Poisson equation (15). �
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Theorem 6. Suppose that G has a locally Lipschitz boundary. Let f ∈ L∞(H)
be a nonnegative function. Let g ∈ Lp( � m ), where p > m, be a compactly supported

function. Put λ = fH. Denote by G1, . . . , Gk all bounded components of G such

that λ(∂Gj) = 0. Let µ ∈ C′c(∂G) be such that

µ(∂Gj) =
∫

Gj

g dHm

for j = 1, . . . , k. If G is unbounded and m 6 4 suppose moreover that

∫
�

m

g dHm = 0,

µ(∂H) =
∫

H

g dHm,

λ(∂H) = 0 for the unbounded component H of G. Then there is u ∈ W 1,2(G), a
weak solution of the third problem for the Poisson equation (13) with the boundary
condition L ≡ Lµ. The general form of this solution is

(16) u = U ν −U (gHm) +
k∑

j=1

cjχGj ,

where

ν =
∞∑

n=0

(
− τ − αI

α

)n µ̃

α
,(17)

µ̃ = µ+ [nG · ∇U (gHm)]H + U (gHm)λ,(18)

α >
1
2

(
V G + 1 + sup

x∈∂G
U λ(x)

)
.

���������
. Put

ϕ(x) =

{
C exp[−1/(1− |x|2)] for |x| < 1,

0 for |x| > 1,

where C is chosen so that
∫
ϕ = 1. For ε > 0 put ϕε(x) = ε−mϕ(xε). Since

U (gHm) ∈ C1( � m ) (see [5], Theorem A.6, Theorem A.11), ϕε ∗ U (gHm) →
U (gHm), ϕε ∗ ∇U (gHm) → ∇U (gHm) locally uniformly as ε↘ 0 (see [30], Theo-
rem 1.6.1, [27], §12). The Divergence Theorem (see [11], p. 49) and [5], Theorem A.16
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yield for j ∈ {1, . . . , k}

µ̃(∂Gj) = µ(∂Gj) +
∫

∂Gj

nG(y) · ∇U (gHm)(y) dH(y)

= µ(∂Gj) + lim
ε→0+

∫

∂Gj

nG(y) · (ϕε ∗ ∇U (gHm))(y) dH(y)

= µ(∂Gj) + lim
ε→0+

∫

∂Gj

nG(y) · ∇[ϕε ∗ (h0 ∗ g)](y) dH(y)

= µ(∂Gj) + lim
ε→0+

∫

∂Gj

nG(y) · ∇[h0 ∗ (ϕε ∗ g)](y) dH(y)

= µ(∂Gj) + lim
ε→0+

∫

Gj

∆U [(ϕε ∗ g)Hm] dHm

= µ(∂Gj)− lim
ε→0+

∫

Gj

(ϕε ∗ g) dHm

= µ(∂Gj)−
∫

Gj

g dHm = 0.

If G is unbounded and m 6 4 then [5], Theorem A.16 and the Divergence Theorem
(see [11], p. 49) yield

µ̃(∂H) = lim
R→∞

{
lim

ε→0+

∫

∂(H∩ΩR(0))

nH∩ΩR(0) · [ϕε ∗ ∇U (gHm)] dHm−1

−
∫

∂ΩR(0)

nΩR(0)(y) · ∇U (gHm)(y) dHm−1(y)
}

+ µ(∂H)

= lim
R→∞

lim
ε→0+

∫

∂(H∩ΩR(0))

nH∩ΩR(0) · ∇[h0 ∗ (ϕε ∗ g)] dHm−1 + µ(∂H)

= lim
R→∞

lim
ε→0+

∫

H∩ΩR(0)

∆U [(ϕε ∗ g)Hm] dHm + µ(∂H)

= − lim
R→∞

lim
ε→0+

∫

H∩ΩR(0)

(ϕε ∗ g) dHm + µ(∂H)

= −
∫

H

g dHm + µ(∂H) = 0.

According to Theorem 4,

U ν +
k∑

j=1

cjχGj

is a weak solution of the third problem for the Laplace equation (10) with the bound-
ary condition L ≡ Lµ̃. If u has the form (16) then Lemma 5 yields that u is a weak

solution of the third problem for the Poisson equation (13) with the boundary con-
dition L ≡ Lµ.
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Let now u ∈ W 1,2(G) be a weak solution of the third problem for the Poisson
equation (13) with the boundary condition L ≡ Lµ. Then

w = u−U ν + U (gHm)

is a weak solution of the third problem for the Laplace equation with the zero bound-
ary condition. According to Theorem 4 the function w is locally constant and van-

ishes on G \ (G1 ∪ . . . ∪Gk). �

Theorem 7. Suppose that G has a locally Lipschitz boundary. Let f ∈ L∞(H)
be a nonnegative function. Let g ∈ L2(G) ∩ Lp,loc( � m ), where p > m. Let L be a

bounded linear functional on W 1,2(G) and µ ∈ C′(∂G) be such that L(ϕ) =
∫
ϕ dµ

for each ϕ ∈ D . If u ∈ W 1,2(G) is a weak solution of the third problem for the
Poisson equation (13) then u is continuously extendible to the closure of G if and

only if µ ∈ C′c(∂G).
���������

. Suppose first that G is bounded. Put λ = fH. If H is a component
of G such that λ(∂H) = 0 fix ϕ ∈ D such that ϕ = 1 on H and ϕ = 0 on G \H .
Since u is a weak solution of (13), we have

µ(∂H) = L(ϕ) =
∫

H

g dHm.

If µ ∈ C′c(∂G) then u has the form (16) by Theorem 6. Since µ̃ given by (18) is an
element of C′c(∂G) (see Lemma 5), Theorem 2 and [18], Theorem 1 yield that ν given
by (17) is an element of C ′c(∂G), too. Since U (gHm) ∈ C1( � m ) by [5], Theorem A.6
and Theorem A.11, u is continuously extendible to the closure of G.
Suppose now that u is continuously extendible to the closure of G. Put % ≡

−[nG·∇U (gHm)]H−U (gHm)λ. Lemma 5 yields that u+U (gHm) is a weak solution
of the Neumann problem for the Laplace equation with the boundary condition

L− L%, which is continuosly extendible to the closure of G. Since (µ− %) ∈ C ′c(∂G)
by Theorem 5 and % ∈ C ′c(∂G) by Lemma 5, we get µ ∈ C ′c(∂G).
Suppose now that G is unbounded. Fix R > 0 such that ΩR(0) ∩ ∂G = ∅. Fix

z ∈ � m \ clG, r > 0 such that Ω2r(z) ∩G = ∅. Put

g̃(x) =





g(x) for x ∈ G ∩ Ω2R(0),

− 1
Hm(Ωr(z))

∫

G∩Ω2R(0)

g dHm for x ∈ Ωr(z),

0 elsewhere.

Put G̃ = G ∩ ΩR(0). Define f = 0 on ∂ΩR(0). Put % ≡ [nG · ∇U (g̃Hm) +
U (g̃Hm)f ]H, %̃ ≡ [nG̃ · ∇U (g̃Hm) + U (g̃Hm)f ][Hm−1/∂G̃]. Lemma 5 yields that
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U (g̃Hm) ∈ C1( � m )∩W 1,2( � m ) is a weak solution solution of the third problems for
the Poisson equation

∆w = −g̃ on G,

∂w

∂n
+ wf = L% on ∂G

and

∆w = −g̃ on G̃,

∂w

∂n
+ wf = L%̃ on ∂G̃.

Choose ϕ̃ ∈ D so that ϕ̃ = 1 on a neighbourhood of ∂G, spt ϕ̃ ⊂ ΩR(0). For
v ∈ W 1,2(G̃) define

ṽ(x) =

{
v(x)ϕ̃(x) for x ∈ G̃,
0 for x ∈ G \ G̃,

L̃(v) = L(ṽ)− L%̃(v) + L%(ṽ) +
∫

∂ΩR(0)

v(y)
y

R
· ∇u(y) dHm−1(y).

Choose ϕ ∈ D so that ϕ = 1 on a neighbourhood of cl ΩR(0), sptϕ ⊂ Ω2R(0). Since
u+ U (g̃Hm) is harmonic on G ∩ Ω2R(0)] we have for v ∈ D

∫

G̃

∇u · ∇v dHm +
∫

∂G̃

ufv dH = −
∫

G̃

∇U (g̃Hm) · ∇v dHm −
∫

∂G̃

U (g̃Hm)fv dH

+
∫

G

∇[u+ U (g̃Hm)] · ∇(ϕv) dHm −
∫

Ω2R(0)\ΩR(0)

∇[u+ U (g̃Hm)] · ∇(ϕv) dHm

+
∫

∂G

[u+ U (g̃Hm)]fϕv dH = −L%̃(v)−
∫

G̃

gv dHm + L%(ϕv) + L(ϕv)

+
∫

∂ΩR(0)

v(y)
y

R
· ∇[u+ U (g̃Hm)](y) dHm−1(y) = L̃(v)−

∫

G̃

gv dHm.

Since D is dense inW 1,2(G̃), u is a weak solution of the third problem for the Poisson
equation

∆u = g on G̃,

∂u

∂n
+ uf = L̃ on ∂G̃.

If u is continuously extendible to clG then [yR−1 · ∇u(y)][Hm−1/∂ΩR(0)] + µ −
%̃ + % ∈ C′c(∂G̃). Since yR−1 · ∇u(y) ∈ L∞(Hm−1/∂ΩR(0)) we have [yR−1 ·
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∇u(y)][Hm−1/∂ΩR(0)] ∈ C′c(∂ΩR(0)). Therefore µ ∈ C ′c(∂G), because % ∈ C ′c(∂G),
%̃ ∈ C′c(∂(G̃)) by Lemma 5.
Let now µ ∈ C′c(∂G). According to Lemma 5 we have % ∈ C ′c(∂G), %̃ ∈

C′c(∂(G̃)). Since yR−1 · ∇u(y) ∈ L∞(Hm−1/∂ΩR(0)) we have µ − %̃ + % + [yR−1 ·
∇u(y)][Hm−1/∂ΩR(0)] ∈ C′c(∂G̃). Therefore u is continuously extendible to the
closure of G̃. Since R > dist(0, ∂G) was arbitrary, u is continuously extendible to
the closure of G. �
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