Previous |  Up |  Next

Article

Keywords:
modules; Summand Intersection Property; Morita invariant
Summary:
A ring $R$ has right SIP (SSP) if the intersection (sum) of two direct summands of $R$ is also a direct summand. We show that the right SIP (SSP) is the Morita invariant property. We also prove that the trivial extension of $R$ by $M$ has SIP if and only if $R$ has SIP and $(1-e)Me=0$ for every idempotent $e$ in $R$. Moreover, we give necessary and sufficient conditions for the generalized upper triangular matrix rings to have SIP.
References:
[1] F. W. Anderson and K. R. Fuller: Rings and Categories of Modules. Springer-Verlag, 1974. MR 0417223
[2] G. F.  Birkenmeier, J. Y.  Kim and J. K. Park: When is the CS condition hereditary. Comm. Algebra 27 (1999), 3875–3885. DOI 10.1080/00927879908826670 | MR 1699593
[3] J. L.  Garcia: Properties of direct summands of modules. Comm. Algebra 17 (1989), 73–92. DOI 10.1080/00927878908823714 | MR 0970864 | Zbl 0659.16016
[4] K. R.  Goodearl: Ring Theory. Marcel Dekker, 1976. MR 0429962 | Zbl 0336.16001
[5] J.  Hausen: Modules with the summand intersection property. Comm. Algebra 17 (1989), 135–148. DOI 10.1080/00927878908823718 | MR 0970868 | Zbl 0667.16020
[6] I.  Kaplansky: Infinite Abelian Groups. University of Michigan Press, 1969. MR 0233887 | Zbl 0194.04402
[7] G. V.  Wilson: Modules with the summand intersection property. Comm. Algebra 14 (1986), 21–38. DOI 10.1080/00927878608823297 | MR 0814137 | Zbl 0592.13008
Partner of
EuDML logo