[1] M. D. Blake:
A spectral bound for asymptotically norm-continuous semigroups. J. Operator Theory 45 (2001), 111–130.
MR 1823064 |
Zbl 0994.47039
[2] S. L. Campbell:
Singular Systems of Differential Equations. Pitman, San Francisco, 1980.
Zbl 0419.34007
[3] S. R. Caradus, W. E. Pfaffenberger and B. Yood:
Calkin Algebras and Algebras of Operators on Banach Spaces. Lect. Notes Pure Appl. Math. Vol. 9. Dekker, New York, 1974.
MR 0415345
[4] Ph. Clément, H. J. A. M. Heijmans, S. Angenent, C. J. van Duijn and B. de Pagter:
One-Parameter Semigroups. North-Holland, Amsterdam, 1987.
MR 0915552
[5] G. Greiner, J. A. P. Heesterbeek and J. A. J. Metz:
A singular perturbation theorem for evolution equations and time-scale arguments for structured population models. Canad. Appl. Math. Quart. 2 (1994), 435–459.
MR 1326900
[6] T. H. Gronwall:
Note on the derivatives with respect to a parameter of solutions of a system of differential equations. Ann. of Math. 20 (1919), 292–296.
DOI 10.2307/1967124 |
MR 1502565
[7] T. Kato:
Perturbation Theory for Linear Operators, 2nd ed. Springer, Berlin, 1980.
MR 0407617
[9] J. J. Koliha and Trung Dinh Tran:
Semistable operators and singularly perturbed differential equations. J. Math. Anal. Appl. 231 (1999), 446–458.
DOI 10.1006/jmaa.1998.6235 |
MR 1669179
[12] J. van Neerven:
The Asymptotic Behaviour of Semigroups of Linear Operators. Birkhäuser Verlag, Basel, 1996.
MR 1409370 |
Zbl 0905.47001
[13] A. Pazy:
Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York.
MR 0710486 |
Zbl 0516.47023
[14] J. Prüss:
Equilibrium solutions of age-specific population dynamics of several species. J. Math. Biol. 11 (1981), 65–84.
DOI 10.1007/BF00275825 |
MR 0617881
[15] A. E. Taylor and D. C. Lay:
Introduction to Functional Analysis, 2nd ed. Wiley, New York, 1980.
MR 0564653
[17] G. F. Webb:
Theory of Nonlinear Age-dependent Population Dynamics. Marcel Dekker, New York, 1985.
MR 0772205 |
Zbl 0555.92014