[1] T. S. Angell, R. E. Kleinman and J. Král:
Layer potentials on boundaries with corners and edges. Čas. pěst. mat. 113 (1988), 387–402.
MR 0981880
[3] N. Boboc, C. Constantinescu and A. Cornea:
On the Dirichlet problem in the axiomatic theory of harmonic functions. Nagoya Math. J. 23 (1963), 73–96.
MR 0162957
[4] M. Brelot:
Éléments de la théorie classique du potentiel. Centre de documentation universitaire, Paris, 1961.
MR 0106366
[5] Yu. D. Burago and V. G. Maz’ya: Potential theory and function theory for irregular regions. Zapiski Naučnyh Seminarov LOMI 3 (1967), 1–152. (Russian)
[6] E. De Giorgi:
Nuovi teoremi relativi alle misure $(r-1)$-dimensionali in uno spazi ad $r$ dimensioni. Ricerche Mat. 4 (1955), 95–113.
MR 0074499
[7] E. B. Fabes, M. Jodeit and N. M. Riviére:
Potential techniques for boundary value problems in $C^1$ domains. Acta Math. 141 (1978), 165–186.
DOI 10.1007/BF02545747 |
MR 0501367
[8] N. V. Grachev and V. G. Maz’ya:
On the Fredholm radius for operators of the double layer potential type on piecewise smooth boundaries. Vest. Leningrad. Univ. 19 (1986), 60–64.
MR 0880678
[9] N. V. Grachev and V. G. Maz’ya: Invertibility of Boundary Integral Operators of Elasticity on Surfaces with Conic Points. Report LiTH-MAT-R-91-50, Linköping Univ., Sweden.
[10] N. V. Grachev and V. G. Maz’ya: Solvability of a Boundary Integral Equation on a Polyhedron. Report LiTH-MAT-R-91-50, Linköping Univ., Sweden.
[11] N. V. Grachev and V. G. Maz’ya: Estimates for Kernels of the Inverse Operators of the Integral Equations of Elasticity on Surfaces with Conic Points. Report LiTH-MAT-R-91-06. Linköping Univ., Sweden.
[13] V. Kordula, V. Müller and V. Rakočević:
On the semi-Browder spectrum. Studia Math. 123 (1997), 1–13.
MR 1438302
[15] J. Král:
Integral Operators in Potential Theory. Lecture Notes in Mathematics 823. Springer-Verlag, Berlin, 1980.
MR 0590244
[17] J. Král: Problème de Neumann faible avec condition frontière dans $L^1$. Séminaire de Théorie du Potentiel (Université Paris VI) No. 9, Lecture Notes in Mathematics Vol. 1393, Springer-Verlag, 1989, pp. 145–160.
[18] J. Král and W. L. Wendland:
Some examples concerning applicability of the Fredholm-Radon method in potential theory. Appl. Math. 31 (1986), 293–308.
MR 0854323
[19] N. L. Landkof:
Fundamentals of Modern Potential Theory. Izdat. Nauka, Moscow, 1966. (Russian)
MR 0214795
[20] D. Medková:
The third boundary value problem in potential theory for domains with a piecewise smooth boundary. Czechoslovak Math. J. 47(122) (1997), 651–679.
DOI 10.1023/A:1022818618177 |
MR 1479311
[23] I. Netuka:
Fredholm radius of a potential theoretic operator for convex sets. Čas. pěst. mat. 100 (1975), 374–383.
MR 0419794 |
Zbl 0314.31006
[24] I. Netuka:
Generalized Robin problem in potential theory. Czechoslovak Math. J. 22(97) (1972), 312-324.
MR 0294673 |
Zbl 0241.31008
[25] I. Netuka:
An operator connected with the third boundary value problem in potential theory. Czechoslovak Math. J. 22(97) (1972), 462–489.
MR 0316733 |
Zbl 0241.31009
[26] I. Netuka:
The third boundary value problem in potential theory. Czechoslovak Math. J. 22(97) (1972), 554–580.
MR 0313528 |
Zbl 0242.31007
[27] I. Netuka:
Continuity and maximum principle for potentials of signed measures. Czechoslovak Math. J. 25(100) (1975), 309–316.
MR 0382690 |
Zbl 0309.31019
[28] A. Rathsfeld:
The invertibility of the double layer potential in the space of continuous functions defined on a polyhedron. The panel method. Appl. Anal. 45 (1992), 1–4, 135–177.
DOI 10.1080/00036819208840093 |
MR 1293594
[30] Ch. G. Simader:
The weak Dirichlet and Neumann problem for the Laplacian in $L^q$ for bounded and exterior domains. Applications. Nonlinear analysis, function spaces and applications, Vol. 4, Proc. Spring School, Roudnice nad Labem (Czech, 1990), Teubner-Texte Math. 119, 1990, pp. 180–223.
MR 1151436
[31] Ch. G. Simader and H. Sohr:
The Dirichlet problem for the Laplacian in bounded and unbounded domains. Pitman Research Notes in Mathematics Series 360, Addison Wesley Longman Inc., 1996.
MR 1454361
[32] M. Schechter:
Principles of Functional Analysis. Academic Press, 1973.
MR 0445263