Previous |  Up |  Next

Article

Keywords:
Neumann problem; Laplace equation; continuous extendibility
Summary:
A necessary and sufficient condition for the continuous extendibility of a solution of the Neumann problem for the Laplace equation is given.
References:
[1] T. S.  Angell, R. E.  Kleinman and J.  Král: Layer potentials on boundaries with corners and edges. Čas. pěst. mat. 113 (1988), 387–402. MR 0981880
[2] H. Bauer: Harmonische Räume und ihre Potentialtheorie. Springer Verlag, Berlin, 1966. MR 0210916 | Zbl 0142.38402
[3] N.  Boboc, C.  Constantinescu and A.  Cornea: On the Dirichlet problem in the axiomatic theory of harmonic functions. Nagoya Math.  J. 23 (1963), 73–96. MR 0162957
[4] M.  Brelot: Éléments de la théorie classique du potentiel. Centre de documentation universitaire, Paris, 1961. MR 0106366
[5] Yu. D.  Burago and V. G.  Maz’ya: Potential theory and function theory for irregular regions. Zapiski Naučnyh Seminarov LOMI 3 (1967), 1–152. (Russian)
[6] E.  De Giorgi: Nuovi teoremi relativi alle misure $(r-1)$-dimensionali in uno spazi ad $r$  dimensioni. Ricerche Mat. 4 (1955), 95–113. MR 0074499
[7] E. B.  Fabes, M.  Jodeit and N. M.  Riviére: Potential techniques for boundary value problems in $C^1$  domains. Acta Math. 141 (1978), 165–186. DOI 10.1007/BF02545747 | MR 0501367
[8] N. V.  Grachev and V. G.  Maz’ya: On the Fredholm radius for operators of the double layer potential type on piecewise smooth boundaries. Vest. Leningrad. Univ. 19 (1986), 60–64. MR 0880678
[9] N. V.  Grachev and V. G.  Maz’ya: Invertibility of Boundary Integral Operators of Elasticity on Surfaces with Conic Points. Report LiTH-MAT-R-91-50, Linköping Univ., Sweden.
[10] N. V.  Grachev and V. G.  Maz’ya: Solvability of a Boundary Integral Equation on a Polyhedron. Report LiTH-MAT-R-91-50, Linköping Univ., Sweden.
[11] N. V.  Grachev and V. G.  Maz’ya: Estimates for Kernels of the Inverse Operators of the Integral Equations of Elasticity on Surfaces with Conic Points. Report LiTH-MAT-R-91-06. Linköping Univ., Sweden.
[12] H.  Heuser: Funktionalanalysis. Teubner, Stuttgart, 1975. MR 0482021 | Zbl 0309.47001
[13] V.  Kordula, V.  Müller and V.  Rakočević: On the semi-Browder spectrum. Studia Math. 123 (1997), 1–13. MR 1438302
[14] J.  Köhn and M.  Sieveking: Zum Cauchyschen und Dirichletschen Problem. Math. Ann. 177 (1968), 133–142. DOI 10.1007/BF01350789 | MR 0227445
[15] J.  Král: Integral Operators in Potential Theory. Lecture Notes in Mathematics 823. Springer-Verlag, Berlin, 1980. MR 0590244
[16] J. Král: The Fredholm method in potential theory. Trans. Amer. Math. Soc. 125 (1966), 511–547. DOI 10.2307/1994580 | MR 0209503
[17] J.  Král: Problème de Neumann faible avec condition frontière dans  $L^1$. Séminaire de Théorie du Potentiel (Université Paris VI) No.  9, Lecture Notes in Mathematics Vol.  1393, Springer-Verlag, 1989, pp. 145–160.
[18] J. Král and W. L.  Wendland: Some examples concerning applicability of the Fredholm-Radon method in potential theory. Appl. Math. 31 (1986), 293–308. MR 0854323
[19] N. L.  Landkof: Fundamentals of Modern Potential Theory. Izdat. Nauka, Moscow, 1966. (Russian) MR 0214795
[20] D.  Medková: The third boundary value problem in potential theory for domains with a piecewise smooth boundary. Czechoslovak Math.  J. 47(122) (1997), 651–679. DOI 10.1023/A:1022818618177 | MR 1479311
[21] D.  Medková: Solution of the Robin problem for the Laplace equation. Appl. Math. 43 (1998), 133–155. DOI 10.1023/A:1023267018214 | MR 1609158
[22] D.  Medková: Solution of the Neumann problem for the Laplace equation. Czechoslovak Math.  J. 48(123) (1998), 768–784. DOI 10.1023/A:1022447908645 | MR 1658269
[23] I.  Netuka: Fredholm radius of a potential theoretic operator for convex sets. Čas. pěst. mat. 100 (1975), 374–383. MR 0419794 | Zbl 0314.31006
[24] I.  Netuka: Generalized Robin problem in potential theory. Czechoslovak Math.  J. 22(97) (1972), 312-324. MR 0294673 | Zbl 0241.31008
[25] I.  Netuka: An operator connected with the third boundary value problem in potential theory. Czechoslovak Math.  J. 22(97) (1972), 462–489. MR 0316733 | Zbl 0241.31009
[26] I.  Netuka: The third boundary value problem in potential theory. Czechoslovak Math.  J. 22(97) (1972), 554–580. MR 0313528 | Zbl 0242.31007
[27] I.  Netuka: Continuity and maximum principle for potentials of signed measures. Czechoslovak Math.  J. 25(100) (1975), 309–316. MR 0382690 | Zbl 0309.31019
[28] A.  Rathsfeld: The invertibility of the double layer potential in the space of continuous functions defined on a polyhedron. The panel method. Appl. Anal. 45 (1992), 1–4, 135–177. DOI 10.1080/00036819208840093 | MR 1293594
[29] A.  Rathsfeld: The invertibility of the double layer potential operator in the space of continuous functions defined over a polyhedron. The panel method. Erratum. Appl. Anal. 56 (1995), 109–115. DOI 10.1080/00036819508840313 | MR 1378015 | Zbl 0921.31004
[30] Ch. G.  Simader: The weak Dirichlet and Neumann problem for the Laplacian in  $L^q$ for bounded and exterior domains. Applications. Nonlinear analysis, function spaces and applications, Vol.  4, Proc. Spring School, Roudnice nad Labem (Czech, 1990), Teubner-Texte Math.  119, 1990, pp. 180–223. MR 1151436
[31] Ch. G.  Simader and H.  Sohr: The Dirichlet problem for the Laplacian in bounded and unbounded domains. Pitman Research Notes in Mathematics Series  360, Addison Wesley Longman Inc., 1996. MR 1454361
[32] M.  Schechter: Principles of Functional Analysis. Academic Press, 1973. MR 0445263
[33] W. P.  Ziemer: Weakly Differentiable Functions. Springer Verlag, 1989. MR 1014685 | Zbl 0692.46022
Partner of
EuDML logo