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Abstract. A necessary and sufficient condition for the continuous extendibility of a solu-
tion of the Neumann problem for the Laplace equation is given.
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1. MAXIMUM AND REGULARITY PRINCIPLE

For x,y € R™, m > 2, denote

(m—2)"tA z —y[>™ forax#vy, m>2,
ha(y) = § A7 ogla —y|™! for z #y, m=2,

0 for x =y,

where A is the area of the unit sphere in R™. For a finite real Borel measure v denote

Unla) = [ hal)do(o),

the single layer potential corresponding to v for each x for which this integral has
sense.

Let H be a bounded open set in R™, g an arbitrary extended real-valued function
defined on OH. We denote by U 5{ the set of all hyperharmonic functions v on H
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which are lower bounded on H and such that for any y € 0H

lim inf u(z) > g(y)-
We put Qf = fU(Hw) and denote by H (or ﬂf) the greatest lower (or least upper)
bound of U}! (or Qf, respectively). (Compare [3], [14].)

A function g on OH is said to be resolutive (relative to H), if H f =H f and
|H (2)| < oo for any 2 € H. We set HY = H[, the generalized solution of the
Dirichlet problem for the Laplace equation with the boundary condition g, provided
g is resolutive. If g € C(OH) and v is a classical solution of the Dirichlet problem
for the Laplace equation with the boundary condition g then g is resolutive and
H! = u. Any bounded Baire function on 0H is resolutive ([3], Theorem 6 and the
text on p. 94).

A set Z C R™ is called a polar set if there is an open set U O Z and a function u
superharmonic on U such that u = 400 on Z.

For a compact K in R™ denote by C’(K) the Banach space of all finite real Borel
measures with support in K with the total variation as a norm.

Lemma 1. Let H C R™ be a bounded regular set, v € C'(0H). Then Uv is the
generalized solution of the Dirichlet problem with the boundary condition Uv/OH.
Let now f be a Borel measurable function on 0H such that {x € 0H; Uv(x) # f(x)}
is polar. Put f = Uv on H. If f is continuous and finite on OH then it is continuous
on the closure of H. If f is bounded on OH then it is bounded on H and

inf < inf < < .
zlé%Hf(x) T}ng(w) sup f(z) sup f(x)

Proof. Suppose first that v is nonnegative. For z € H denote by p. the
harmonic measure corresponding to H and z. If y € 0H, z € H then

[ oo dne@) = ()
OH

by [19], pp. 299, 264. Using Fubini’s theorem we get

Juvan= [ | n@ o)) = [ v ).

Thus Uv is a solution of the Dirichlet problem with the boundary condition v /0H.
Let v be general. Let v = vT — v~ be the Jordan decomposition of v. Then
Uv = UvT —Uvr~ is a solution of the Dirichlet problem with the boundary condition
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Uv/OH. Since harmonic measures do not charge polar sets ([2], Lemma 4.4.5), Uv is
a solution of the Dirichlet problem with the boundary condition f. If f is continuous
on OH then f is continuous on the closure of H. If f is bounded on OH then f
is bounded on H and since harmonic measures are probability measures we get the
above inequalities. O

2. NEUMANN PROBLEM

Suppose that G C R™ (m > 2) is an open set with a non-void compact bound-
ary 0G. If h is a harmonic function on G such that

/ V| dH,, < o0
H

for all bounded open subsets H of G we define the weak normal derivative Nh of h
as the distribution

(NCh, ) = /Gw -VhdHn,

for ¢ € D (= the space of all compactly supported infinitely differentiable functions
in R™). Here Hj is the k-dimensional Hausdorfl measure normalized so that Hy, is
the Lebesgue measure in R*. We formulate the Neumann problem for the Laplace
equation with a boundary condition p € C'(0G) in the sense of distributions as
follows: determine a harmonic function h on G for which N®h = u. It is usual to
look for a solution £ in the form of the single layer potential v, where v € C'(9G).
The single layer potential v is a harmonic function in G for which the weak normal
derivative N“Uv has sense. The operator NCU: v — NSUv is a bounded linear
operator on C'(9G) if and only if V& < oo, where

VY = sup v%(x),
r€0G

v (x) = Sup{/ Vo VhydHm; ¢ €D, |p| <1, spte CR™ — {w}}
G

(see [15]). There are more geometrical characterizations of v (x) in [15] which ensure
V& < oo for G convex or for G with G C {|JL;; i = 1,..., k}, where L; are (m—1)-
dimensional Ljapunov surfaces (i.e. of class C1+).

If z € R™ and € is a unit vector such that the symmetric difference of G and
the half-space {x € R™; (z — z) - 0 < 0} has m-dimensional density zero at z then
n%(z) = 0 is termed the exterior normal of G at z in Federer’s sense. If there is no
exterior normal of G at z in this sense, we denote by n%(z) the zero vector in R™.
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The set {y € R™; |n%(y)| > 0} is called the reduced boundary of G and will be
denoted by 0G.

If G has a finite perimeter (which is fulfilled if V& < 00) then H,, 1(0G) < oo
and

o9 () = / 1nS(y) - Vha(y)] dHom—1 (1)
oG

for each € R™. Throughout the paper we will assume that V¢ < co. Then

G = x)dv(x n%(y) - 1 v(x
N = [ do@an+ [ n) - Iha(e) ) )

for each v € C'(0G) and a Borel set M (see [15]).

If L is a bounded linear operator on the Banach space X we denote by ||L||ess
the essential norm of L, i.e. the distance of L from the space of all compact linear
operators on X. The essential spectral radius of L is defined by

Tess L = nILH;O(HLn”ebb)l/n
If X is a complex Banach space then

ressL = sup{|A|; Al — L is not a Fredholm operator}
= sup{|A|; AI — L is not a Fredholm operator with index 0}
(see [12], Satz 51.8, Theorem 51.1).
Theorem ([22]). Let ress(NCU — $I) < L1, where I is the identity operator,
u € C'(0G). Then there is a harmonic function v on G, which is a solution of the

Neumann problem
NGy = W,

if and only if u € C4(0G) (= the space of such v € C'(0G) that v(OH) = 0 for each
bounded component H of cl G). Moreover, if i € Cj(0G) then there is a solution of
this problem in the form of the single layer potential Uv, where v € C'(0G).

Remark 1. It is well-known that the condition ress(N GuY — %I ) < % is fulfilled
for sets with a smooth boundary (of class C'*®) (see [16]) and for convex sets
(see [23]). R.S. Angell, R.E. Kleinman, J. Kral and W.L. Wendland proved that
rectangular domains (i.e. formed from rectangular parallelepipeds) in R have this
property (see [1], [18]). A. Rathsfeld showed in [28], [29] that polyhedral cones in R3
have this property. (By a polyhedral cone in R®> we mean an open set Q whose
boundary is locally a hypersurface (i.e. every point of 92 has a neighbourhood in 99
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which is homeomorphic to R?) and 952 is formed by a finite number of plane angles.
By a polyhedral open set with bounded boundary in R?® we mean an open set
whose boundary is locally a hypersurface and 912 is formed by a finite number of
polygons). N.V. Grachev and V. G. Maz’ya obtained independently an analogous
result for polyhedral open sets with bounded boundary in R® (see [10]). (Let us
note that there is a polyhedral set in R® which has not a locally Lipschitz boundary.)
In [20] it was shown that the condition ress(N“U — 1) <  has a local character. As
a conclusion we obtain that this condition is fullfiled for G C R?® such that for each
z € OG there are r(x) > 0, a domain D, which is polyhedral or smooth or convex
or a complement of a convex domain, and a diffeomorphism ,.: U(x;r(x)) — R3
of class C17, where o > 0, such that ¢, (G NU(z;r(x))) = Dy N e U(x;7(2))).
V. G. Maz’ya and N. V. Grachev proved this condition for several types of sets with
“piecewise-smooth” boundary in the general Euclidean space (see [8], [9], [11]).

In the rest of the paper we will suppose that 7ess(NCU — %I ) < % Denote by 'H
the restriction of H,,_1 onto dG. Then H(R™) < oo (see [22], Lemma 2).

Notation. C.(0G) will stand for the subspace of those p € C'(0G) for which
there exists a continuous function U . on R™ coinciding with U on R™ \ 9G. It
was shown in [27] that if v € C'(OG) and the restriction of Uv onto JG is finite and
continuous then Uv is finite and continuous in R™ and v € CL(0G). If u = fH,
where f € L,(H), p > m — 1 then p € C.(0G) (see [21], Remark 6).

Notation. Denote by 7 the set of all isolated points of G, G = G UZ. Then
the set Z is finite by [22], Lemma 1. Therefore VG =VE < oo, NCUv = NCU for
v € C'(0G) and ress(NCU — 11) = 1ess(NCU — 1), because C'(0G) is a subspace of
C'(0G) of a finite codimension.

Denote by Qr(z) the open ball with a centre = and a radius R.

Lemma 2. Let R > 0 be such that 9G C Qg(0). Then G N Qx(0), Qr(0)\ cl G

are regular sets.

Proof. Since the density of G N Qz(0) and the density of Qz(0) \ cIG are
positive at each point of the boundary of G by [22], Lemma 1, the sets G' N Qz(0),
Qr(0)\clG are regular (see [4], Chap. VII, §§2, 6, 19, Theorem 5.11, Theorem 5.10).

O

Lemma 3. G has finitely many components G1, ..., G, and c1G; Ncl Gy = 0 for
J#k.
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Proof. If we define for f € Loo(H), z € 0G

W f(x) = da(x)f(z) + . F)n©(y) - Vha(y) dH(y),

then W is a bounded linear operator on L., (H), because V& < co. If we define for
feLi(H), z€dG

(NUH)f(@) = de(@)f () = [ Fu)n (@) Tha(y) dH(y).

then (N“UH) is a bounded linear operator on L;(H) (compare [17], Theorem 1).
Since NCU(fH) = [(NCUH)f]H for each f € Li(H) and {fH; f € Li(H)} is
a closed subspace of C'(9G), we have ress(NYUH) — 1) < ress(NOU — $1) < &
by [20], Lemma 1.3 or [13], Lemma 15.

Fix a bounded component H of G. Since Hy,—1(0H) < Him-1(0G) < oo, the
perimeter of H is finite. Since H,,_1(G \ dG) = 0 by [22], Lemma 2 and n (y) =
nG(y) for each y € OH N HG, we have

i = nf(z) - T 1= n%(x) - x o1 <&
v (y)—/é| (2) - Vhy(z)| dH /émG| (2) - Ty ()| dHm 1 < 09 (1)

for each y € OH. Therefore V¥ < oo and dg(y) has a good meaning for each y € OH
by [15], Lemma 2.9. Put

1 for yEéHﬂéG,
up(y) =

0 for y € dG\ dH NG,

Since n%(y) = nf (y) for y € HHNHG and H,,_1 (G \ IG) = 0, [15], Proposition 2.8
and Lemma 2.15 yield

Woun(e) = Jun@) + [ () Vhaly) dHons (1)
= guna) [ n(0) - Vhat) a0
= §UH($) —dpg(x).

If 2 € OH N JG then dy(z) = 1 and thus WCup(z) = 0. If dy(z) = O then
ug(x) = 0, therefore Wuy(z) = 0. Since Hp_1({z € G\ dH; dg(x) > 0} <
Hm-1({x € OH\ dH; 0 < du(z) < dg(zr) < 3} = 0 by [33], Lemma 5.9.5 and
Hpm—1(0G \ dG) = 0 by [22], Lemma 2, W uy (z) = 0 for H-a.a. 2 € dG. Since the
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perimeter of a nonempty open bounded set is positive (see [33], Theorem 5.4.3) and
Hym_1(0H) is equal to the perimeter of H (see [33],Theorem 5.81, Theorem 5.6.5)
and H,,_1(0H \ G) = 0, the function uy is positive on the set dH NIG of positive
‘H measure.

If Hy, H, are different bounded components of G then oG N 3H1 N 3H2 =0,
because Hy, Ho are disjoint. The set {uy; H is a bounded component of G} contains
linearly independent elements of the kernel of W&. Since N¢(UH) is a Fredholm
operator and W is an adjoint operator of N“UH, the operator W is a Fredholm
operator as well (see [12], Satz 51.8, Theorem 27.1). Since the dimension of the
kernel of W is greater than or equal to the number of bounded components of G
and W€ is a Fredholm operator, G has only finitely many components. (Since dG
is bounded, there is at most one unbounded component of G.) According to [22],
Note 5 the codimension of the range of N (UH) is equal to the number of bounded
components of the closure of G. Since the dimension of the kernel of W& is equal
to the codimension of the range of N&(UH), because W is the adjoint operator
of N4(UH) (see [12], Theorem 27.1), the number of bounded components of G
is smaller than or equal to the number of bounded components of the closure of G.
Therefore the number of bounded components of G is equal to the number of bounded
components of the closure of G and the closures of any two different components of G
are disjoint. (I

Theorem 1. Let v, € C'(0G), N°Uv = pu. Then the following assertions are
equivalent:
a) v e CL(0G).
b) u € CL(0G).
c) There is a finite continuous extension of Uv from G onto the closure of G.

d) There is a finite continuous extension of Uy from G onto the closure of G.

If 0G = O(R™ \ G) then these assertions are equivalent to the following ones
e) There are a polar set K and a finite continuous function f on OG such that
Uv = fonIG\ K.
f) There are a polar set K and a finite continuous function f on OG such that
Up=fondG\ K.

Proof. Denote uzr = p/Z, pg = p/(0G\I), vt = v/I, vg = v/(0G\ I).
Since the density of G at each point of G \ 7 is positive by [22], Lemma 1, we have
uz = vz by [15], Observation on p. 25. If ur = vz # 0 then none of the assertions
a)-d) is true. So we can suppose that 7 = vz = 0 and coming to G we can suppose
that 0G = 9(R™ \ G).

a) = b). p € CL(OG) by [15], Plemelj’s exchange theorem 2.23.
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b) = a). This assertion is true for m > 2 by [21], Lemma 13. Let us suppose that
m = 2. If we denote for f € C(0G) (= the space of all bounded continuous functions
on 9G equipped with the maximum norm) and z € 0G

W f(x) = da(z)f(z) + - F)n®(y) - Vha(y) dH(y),

then W& is a bounded linear operator on C(dG) and N®U is the dual operator
of WY (see [15], Proposition 2.5, Proposition 2.20). We shall show that U.u €
WE(C(0@)). Since Ker(I — NCU)N (I — NCU)(C'(0G)) = {0} by [22], Proposition 2
and dim Ker(I — N“U) = codim(I — N“U)(C' (0G)) because (I — NCU) is a Fredholm
operator with index 0, the space C'(0G) is the direct sum of (I — NU)(C'(0G))
and Ker(I — NCU). Therefore 1 = py + p2, where py € Ker(I — N9UY) and
pa € (I — NCU)(C'(0G)). Since py € CL(OG) by [22], Lemma 4, we get Uopy =
U.(N“Upy) = W U.py) by [15], Plemelj’s exchange theorem 2.23. Since y, 11 €
C/(8G), we have ps € CL(0G), too. Put # = v — py. Then NCUD = py. Put
C = R™ \ clG. Since N°U = I — NCU, we have us € NCU(C'(0G)). If G is
bounded then we choose ¢ € D such that ¢ =1 in a neigbourhood of cl G. We get

12(0G) = (NUD, ) = / V- VUD = 0.
G

If G is unbounded we get p2(0G) = 0 in a similar way using the facts that po €
NCU(C'(0G)) and C is bounded. Let o € C'(0G), N?Uo = 0. Then o € C.(9G)
by [22], Lemma 4. Since the density of G is positive at each point of the boundary
by [22], Lemma 1, we have H(OG) > 0 by Isoperimetric lemma ([15], p. 50). Put oy =
o(0G)[H(OG)]"'H, o2 = 0 — 01. Then Uo is finite and continuous on R™ by [22],
Lemma 2, [15], Corollary 2.17, Lemma 2.18. Therefore o5 € C.(0G). Using [22],
Lemma 7 we get

/ Ucpo dog = / VUpus - VUos dH,, = / U.oo dpia.
oG G oG

If © € OG, U|pz|(x) < oo then Uepz(x) = Ups(x), because Ups is finely continuous
at x (see [19], Chapter V, §3) and R™ \ G is not a fine neighbourhood of z, because
dg(z) > 0 (see [4], Chap. VII, §§2, 6, 19, Theorem 5.11). Thus U.pz = Ups outside
the polar set {x; U|uz|(x) = oo}. Since oy does not charge polar sets (see [19],
Theorem 3.1, Theorem 2.1) using Fubini’s theorem we get

/ L{cugdol = Z/{/Lgdo’l = Uoldugz L{cald,ug.
oG oG oG oG
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Denote by Hi, ..., H, the components of G. Then there are cy,...,c, € R such that
U.o =c;on Hj for j=1,...,p by [22], Lemma 12. Therefore

P
/ U.pis do = / U.odus = Z cita(0H;).
oG oG Jj=1

If H; is bounded, choose ¢ € D such that ¢ =1 on H; and ¢ = 0 on clG\ H;. Then

uz(aHj):<u2,<ﬂ>:<NGW,50>:/GVW-Vsade:0-

If H; is unbounded then we get u2(0H;) = 0 from the facts that p2(0G) = 0 and
u2(0H;) = 0 for each bounded H;. Therefore

(1) / U s do = 0.
oG

Since NU is Fredholm, (1) yields that U.us € W (C(OG)) by [32], Chapter VII,
Theorem 3.1. Since U1 € WE(C(OG)), Uepz € WE(C(OG)) we have U €
WE(C(0G)).
Put -
vo=p+ Y (I —2NCUY (2T - N°U)p.
7=0
Then NSUvy = p by [22], Theorem 1. Put

p; = (I —2NU) (2T — NCU)p

for j a nonnegative integer. According to [15], Plemelj’s exchange theorem 2.23 we
have p; € CL(0G) and

Uepty = (I =2W ) (21 = W)U on OG.

If X is an eigenvalue of W&, |A — 2| > 1 then X is an eigenvalue of NU, because
M — NCU, NI — WE are Fredholm operators with index 0 and the kernels of these
operators have the same dimension (see [32], Chapter IX, Theorem 2.1, Theorem 1.3,
Chapter VII, Theorem 3.5, Chapter V, Theorem 4.1); therefore A € {0;1} by [22],
Proposition 1. Since Ker(A\l — N¢U)? = Ker(AI — N¢U) by [22], Proposition 2 we
have Ker(A\ — W&)2 = Ker(\ — W) by [32], Chapter V, Theorem 2.3, Chapter V,
Theorem 4.1. Now [22], Proposition 3 yields that there are constants ¢ € (0;1),
M > 0 such that

(I = 2W ) (21 = WY glleoc) < M |gllcoc)
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for all g € W& (C(0G)). Since U € WE(C(OG)) we have

S Wepisllcoey = > NI = 2WEY 21 = WUeplle(oc) < oo

Jj=0 Jj=0

Since

llenocy + D Inslleroa) < oo, [Ueplicoe) + D, WUetislleoc) < oo,
=0 =0
[15], Lemma 4.5 yields that v € CL(0G).

Since NYU(v — 1) = 0, we have v — vy € C.(OG) by [22], Lemma 4 and thus
v € CL(0G).

c) = e). Let f denote a finite continuous extension of Uv from G onto the
closure of G. Because v+, Uv~ are superharmonic functions they are continuous
with respect to the fine topology (see [19], Chapter V, §3). Denote K = {z € 9G;
U|v|(xz) = oo}. Then K is polar and Uv(z) is the fine limit of Uv for each z € IG\ K.
Thus f(z) = Uv(x) for each © € OG \ K, because every fine neighbourhood of z
intersects G by Lemma 2, [19], Theorem 5.11, Theorem 5.10.

e) = a). Define f = Uv on R™ \ OG. Fix R > 0 such that 0G C Qr(0). Using
Lemma 1 and Lemma 2 for GNQr(0) and M = Qr(0) \ cl G we get

= i Uv(y) for z € IG.
fay=_ lim . uvy) forz

Therefore v € CL(9G). O
Lemma 4. Let H C R™ be a bounded open set, H,,—1(0H) < oo, u € C'(0H),

let u be a solution of the Neumann problem N u = i, finite and continuous up to
the boundary of H. Then for each x € H

u(z) = Up(z) — Du(z),
where
Dufa) = [ ulw)n® () Thol) 4t (0)
is the double layer potential corresponding to the density u.

Proof. Fix z € H, r > 0 such that clQ.(z) C H. Put H(r) = H\ Q.(z).
Choose ¢ € D such that ¢ = 1 in the neighbourhood of cl H(r) and ¢ = 0 in the
neighbourhood of . Green’s formula yields

Up(z) = (NHu, hyp)

= / Vhy - VudH,, + / R ()@ () - Vu(y) dHom -1 (y).
H(r) o0, (x)
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Since H,,—1(0H) < oo there is a positive konstant K such that for each positive
integer k there are balls Q,, (x1), ..., Q. (x;) such that 0H C (Q, (z1)U...UQ,, (;)),
il +...+T§”71 < K, max(rq,...,75) < %, dist(z;,0H) < % fori=1,...,7; put
Hy(r) = H(r) \ (Q, (1) U...UQ, (x5)). Then Hy,(H(r) \ Hi(r)) — 0 as k — oo,
Hum—1(Hg(r)) < L= (K + 1" YHpm_1(001(0)).

Fix € > 0. Since cl H is compact, there is a polynomial p such that |u — p| < e
on cl H. Using Green’s formula we get

\ [ Vht) Vu ) - [ aln" ) Vil de1<y>|
H(r) OH(r)

k—o0

lim / Vha(y) - Vu(y) dHm(y)
Hy(r)

_ / u(y)n™ ) (y) - Vha(y) del(y)‘
OH(r)

lim / un™ (") T hy AHpm -1 / un™") NV hy, dHom_ 1
OHy ()

k—o0

OH(r)
S hm/ p(y)n™ O (y) - he(y) dHm—1(y)
k—co Jom, (r)
e2L
L ) ) )] +
OH(r) r
= | lim / Vp - VhyHp — Vp-thHm’
k—oo J (1) H(r)
n e2L _ e2L
rm—l4 = pm-14"
Therefore
Vh, - VudH, = / u(y)n") - Vhy (y) dHm—1(y),
H(r) AH(r)
Up(z) = / un™)  Vh, dH,, 1 + / hon® . VudH,, .
OH(r) o, (x)

If r — 0 we get

Un(z) = /a ) () Tholy) Mo a(9) + ua).
O

Lemma 5. Let pu € C'(9G), let u be a solution of the Neumann problem N%u = p,
finite and continuous up to the boundary of G. Then u € CL(0G).
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Proof. Let G be bounded. Then v = Up — Du. Since u is continuous and
finite on JG, the double layer potential Du is continuously extendible to the closure
of G (see [15], Chapter 2). Therefore Uy = Du + u is continuously extendible to the
closure of G. Hence p € C.(9G) by Theorem 1.

If G is unbounded, fix R > 0 such that 0G C Qr(0). Put H = G N Qg(0). Then
VH < 00, ress(NHU — é[) < % If we put

x

(M) = Vu(z) dHp—1(x)

OQR(0)NM ||

for a Borel measurable set M then N7y = u + [i. Since v is finite and continuous
onclH, u+ i € CL(OH). Since U is continuous in a neighbourhood of G by [15],
Lemma 2.18, we have u € CL(0G). O

Lemma 6. Let G be unbounded, let w be a solution of the Neumann problem in
the sense of distributions with the null boundary condition. Suppose that there are
g > 1, R > 0 such that |Vw| € Ly(G \ Qr(0)). Then there is a real number a such
that w — a = O(Jz|*=™), [Vw| = O(|z|™™) as |z| — oo.

Proof. Fix zyp € R™ \ clG. Then [31], Chapter I, Theorem 3.5 yields that
there are real numbers a, b and a harmonic function v on a neighbourhood of 0 with
v(0) = 0 such that

r—X
U)(ZE) = a+ bhwo + |£E — x0|2_mv<ﬁ).
)

Fix R > 0 such that 0G C Qg(x). If p € D, ¢ =1 on Qr(xg) then

0= <NGw,<p> _ <NGHQR($0)M,¢> + <NG\QR($O)U),§0>
= —/ nSR@0) 7y dH,, 1
aQR(I())

r — X9

- /BQR(%) @) v['"T - $0|2_mv(m)} dHp—1(2).

Since |V[|z — zo|> ™ ((z — z0)/|z — x0]?)]| = O(|z|™™) as |z| — oo by [31], Chap-
ter I, Corollary and Remark 3.6, we get b = 0 taking R — oo. Therefore |Vw(z)| =
O(lz|7™), [w(x) — a| = O(J«|'~™) as |z| — oc. O

Theorem 2. Denote by Gy, ..., Gy, all components of G. If u € Cj(OG) then there
is a solution of the Neumann problem in the sense of distributions with the boundary
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condition , which is continuous up to the boundary, if and only if u € CL(0G). If
G is bounded then the general form of this solution is

k
(2) ’U/:Z/{V-FZC]'XGJ,7
j=1
where
(3) v=p+2Y (I-2NUY (I - NU)p,

=0

XG,; are characteristic functions of Gi; and c; are arbitrary constants. If G is un-
bounded then (2) is a general form of solutions continuously extendible to the bound-
ary of G for which there are R > 0, p > 1 such that |Vu| € L,(G \ Qr(0)).

Proof. If p € CL(OG), then u given by (2) is a solution of the Neumann
problem with the boundary condition g, which is continuous up to the boundary
(see Theorem 1 and [22], Theorem 1).

If u is a continuous (up to the boundary) solution of the Neumann problem with
the boundary condition p, then p € C.L(0G) by Lemma 5. Put w = u — Uv. Then
w is a solution of the Neumann problem in the sense of distributions with the zero
boundary condition, continuous up to the boundary.

Suppose that G is bounded. Then w = —Dw on G by Lemma 4. Since V& < oo,
—Duw has a limit WR™\%w on the boundary, where

4 WENCw(@) = dgm (2)w(z) —/ w(y)n(y) - Vhe(y) dHm-1(y)
oG

by [15], Remark 2.24. If we denote for f € C(0G) and z € G

(5) W f(z) = da(x)f(z) + (Y)n%(y) - Vha(y) dHm-1(y),

f
oG
then W%w = 0. Since N®U is a Fredholm operator, the codimension of the range
of N¢U is equal to k by [22], Theorem 1 and N“U is the adjoint operator of W¢
by [15], Proposition 2.20, the dimension of the kernel of W& is equal to k by [12],
Theorem 27.1. In a similar way as for w we get that WGXan = Wya c; = 0.
Since xg,,---;Xqg, form a base of the kernel of W& and W%w = 0, w is constant
on 0G; for each j = 1,...,k. Since w is harmonic and continuous, it is constant
on G, for each j =1,...,k. So, u has the form (2).

Suppose now that G is unbounded and there are R > 0, p > 1 such that |Vu| €
L,(G\Qr(0)). According to Lemma 6 there is a real number a such that |[Vw(z)| =
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O(|z|=™), |w(x) — a] = O(Jx|*=™) as |z| — oco. Fix 29 € R™ \ clG, R > 0 such that
0G C Qpr(xp). According to Lemma 4 we have for x € G N Qg(zo)

w(z) —a = / hpnSEE0) -7 AH
QR (zo)

- / (w — a)n?7@) . Vh, dH,, 1 — D(w — a)(z).
QR (o)

Tending R — oo we get w(x)—a = —D(w—a)(z) in G. Since VE < oo, —D(w—a) has
the limit WR®™\E (w — a) (given by (4)) on the boundary. Therefore W (w — a) = 0
(W& is given by (5)). Since N“U is a Fredholm operator, the codimension of the
range of NU is equal to k — 1 by [22], Theorem 1 and N is the adjoint operator
of W&, the dimension of the kernel of W¢ is equal to k — 1 by [12], Theorem 27.1.
In a similar way as for w we get that WGXBGJ- = WSya G; = 0 for each bounded
component G; of G. Since {x¢,; G; bounded} form a base of the kernel of W and
W% w —a) =0, w is constant on dG; for each j =1,...,k and (w — a) = 0 on the
boundary of the unbounded component of G. Since (w — a) is harmonic, continuous
on clG and (w(z) — a) tends to 0 as |z| tends to infinity, w is constant on G; for
each j =1,...,k. So, u has the form (2). O

Remark 2. If G is unbounded then the space of all solutions of the Neumann
problem in the sense of distributions with the zero boundary condition, which are
continuously extendible onto the closure of GG, has infinite dimension. For a positive
integer j put

J .
o) =3 (57 ) (1P Eatha 2,
k=0
Then f; are harmonic functions in R™. According to Theorem 2 there are v; €
C.(0G) such that Uv; is a solution of the Neumann problem in the sense of distribu-
tions with the boundary condition %H. Then u; = f;—Uv; are solutions of the Neu-
mann problem in the sense of distributions with the zero boundary condition, which
are continuously extendible onto the closure of G. Since limu;(z1,...,Zm) Jol —1

as 1 — 0o, the functions u; are linearly independent.

Lemma 7. Let v € CL(OG). If m > 2 then |VUv| € Ly(R™). If m = 2 then
|VUV| € Lajoc(R™) and |VUv| € Lo(R™) if and only if v(R™) = 0.

Proof. If m > 0or m = 2 and v(R™) = 0 then |VUv| € Lo(R™) by [22],
Lemma 2, Lemma 6. Let now m = 2, v(R™) # 0. Choose z € G, r > 0 such
that Qg(x) C G. Put H = G\ clQ,(x) and let p be the restriction of H; onto
00, (x). Fix a constant ¢ such that ¥(R™) — cu(R™) = 0. Since v — cu € CL(OH)
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by [15], Lemma 2.18, we have |VUv — cVUu| € La(R™) (see [22], Lemma 6). Easy
calculation yields that there are constants c1, ¢z such that Uu = ¢; in Q,(x) and
Up = c1 + calog(|z]/r) on R™ \ Q,(z). Since |VUp| € Lajoc(R™) \ La(R™) we have
got the assertion of the lemma. O

Notation. Denote by W12?(G) the collection of all functions f € Ly(G) the
distributional gradient of which belongs to [L2(G)]™.

Lemma 8. Let v € C.(0G). If G is bounded then Uv € W12(G). If G is
unbounded and m > 4 then Uv € W12(G); if 3 < m < 4 then Uv € W12(G) if and
only if v(R™) = 0.

Proof. Uv € WH%(G) for G bounded because |VUV| € L joc(R™) and Uv is
continuously extendible to clG. Let now G be unbounded, m > 2. The assertion
follows from the facts that |VUv| € Ly(R™), Uv is continuously extendible to clG
and Uv(z) = v(R™)|z|>~™ + O(|z|*=™) for |z| — oc. O

Throughout the rest of paper we will suppose that D is dense in W12(G). Ac-
cording to [33], Theorem 2.3.2 this condition is fulfilled if {f/G; f € WY2(R™)} =
wWh2(@).

Definition. Let L be a bounded linear functional on W12(G) such that L(¢) = 0
for each ¢ € D(G) = {p € D; sptyp C G}. We say that u € WH%(G) is a weak
solution of the Neumann problem for the Laplace equation with the boundary con-
dition L if

/ Vu - VvdH,, = L(v)
G

for each v € WH2(G).

Lemma 9. Let p € CL(0G). If G is bounded suppose that u(0G) = 0. Then
there is a unique bounded linear functional L,, on W'?(G) such that

(6) Lu(p) = /{mwdu

for each ¢ € D.
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Proof. According to Theorem 2 and Theorem 1 there is v € C/(0G) such that
NCUv = p. Fix 1) € D such that ¢» = 1 in a neighbourhood of G. If ¢ € D then

/ <pdu:/ 1/)gpdNGL{u:/V(w<p)-VZ/lude
oG oG G

1/2 1/2
< sup |9 (/ |w|2de) (/ |VUv|? de>
Gnspt ¢ Gnspt ¢

1/2 1/2
+ sup |V (/ |¢|2de) (/ |vuy|2de)
GNspt ¢ GnNspt Y

< Cllellwreay,
where

1/2
C = 2(sup || + sup |V (/ |VUV|2de) < o0
GnNspt ¢

by Lemma 7. According to the Hahn-Banach theorem there is a bounded linear
functional L, on W'2(G) such that (6) holds. Since D is dense in W'2(G), the
functional L, is unique. (I

Theorem 3. Let u € C{(OG)NCL(OG). If G is unbounded suppose moreover that
m > 2 and p(R™) = 0 for 3 < m < 4. Then there is a weak solution u € W12(G) of
the Neumann problem for the Laplace equation with the boundary condition L. If
G1,...,Gy are all components of G then the general solution of this problem has the
form (2), where v is given by (3) and ¢; = 0 for G; unbounded while c; is arbitrary
constant for G; bounded.

Proof. Letv begiven by (3). Then N°Uv = p and v € C,(IG) by Theorem 1,
Theorem 2. If u(R™) = 0 then v(R™) = 0, because NUu(R™) = 0 by [22],
Lemma 9. According to Lemma 8 we have Ur € W%(G). For a fixed v € W12(G)
choose ¢,, € D such that ¢, — v in W12(G) as n — oo. Then

L,v)= lim [ ¢,dp= lim / Vo  VUvdH,, = / Vv - VUv dH,,.

n—oo

Uv is a weak solution of the Neumann problem for the Laplace equation with the
boundary condition L,. If u has the form (2), where ¢; = 0 for G; unbounded,
then u is a weak solution of the Neumann problem for the Laplace equation with the
boundary condition L.

Let u € W%(G) be a weak solution of the Neumann problem for the Laplace
equation with the boundary condition L,,. Since u —Uv € W?(G) we have

0= / Vu-V(u—Uv)dH, — / VUy -V (u—Uv)dH,, = / IV (u—Uv)|> dH,,.
G G G
Since (u — Uv) is locally constant on G, u has the form (2). O
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Theorem 4. Let L be a bounded linear functional on W2(G) and let uu € C'(0G)
be such that L(p) = [ ¢du for each ¢ € D. If u € W'?(G) is a weak solution of the
Neumann problem for the Laplace equation with the boundary condition L, then u
is continuously extendible to the closure of G if and only if i € CL(0G).

Proof. Since N®u = p, [22], Theorem 1 yields that yu € C,(0G). If u is
continuously extendible to the closure of G then p € C.(0G) by Theorem 2. Suppose
now that p € C,(dG). If G is bounded put G = G, ji = p. If G is unbounded fix
R > 0 such that G C Qx(0) and put G = G NQx(0), i = pt + &(Hyn—1/02r(0)).
Since V& < oo we have V& < co. Since res(NCU — %I) < % and (N7U — %I) is
compact for each bounded open set H with a smooth boundary, [20], Theorem 2.3
yields that reSS(NGL{ —3I) < 3. Since NGy = fi, [22], Theorem 1 yields that
1 € CH(0G). If G is unbounded then 2% (H,,_1/9Qx(0)) € CL(OG) by [21], Remark 6
and therefore i € C/(OG). Since u is a weak solution of the Neumann problem for the
Laplace equation on G with the boundary condition Lj, Theorem 3 and Theorem 2

yield that u is continuously extendible to the closure of G. O

Remark on the Boundary Element Method. Let H be a bounded domain
in R™ (m = 2 or 3) with a piecewise-smooth boundary, let f be a bounded measurable
function on 0H. We want to solve the Neumann problem for the Laplace equation
with the boundary condition f. Denote by H the surface measure on JH. Since
U(fH) is a continuous function in R™ (see [15], Lemma 2.18), there is u € C(0H)
which is a solution of the Neumann problem for the Laplace equation with the
boundary condition fH in the sense of distributions (see Theorem 2). According to
Lemma 4

u(z) = U(fH)(x) — Du(x)

for each € H. Using the boundary behaviour of a double layer potential with a
continuous density ([15], Chapter 2), we get for x € 0H

u(z) =U(fH)(x) — Du(z) + dpme 1 (2)u().
Therefore, the equation
d (z)u(x) + Du(z) = U(fH)(z),

which is the starting point of the boundary element method, holds and there is a
continuous solution u of this equation.
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