Article
Keywords:
Banach limit; dual convergence theorem; duality mapping; Ishikawa iteration process; nonexpansive mapping
Summary:
In this paper we establish a dual weak convergence theorem for the Ishikawa iteration process for nonexpansive mappings in a reflexive and strictly convex Banach space with a uniformly Gâteaux differentiable norm, and then apply this result to study the problem of the weak convergence of the iteration process.
References:
[1] R. E. Bruck and S. Reich:
Accretive operators, Banach limits and dual ergodic theorems. Bull. Acad. Polon. Sci. 29 (1981), 585–589.
MR 0654218
[2] L. Deng:
Convergence of the Ishikawa iteration process for nonexpansive mappings. J. Math. Anal. Appl. 199 (1996), 769–775.
MR 1386604 |
Zbl 0856.47041
[3] K. Goebel and S. Reich:
Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings. Marcel Dekker, New York and Basel, 1984.
MR 0744194
[10] K. K. Tan and H. K. Xu:
Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process. J. Math. Anal. Appl. 178 (1993), 301–308.
DOI 10.1006/jmaa.1993.1309 |
MR 1238879