Article
Keywords:
existence and uniqueness; Galerkin method; nondegenerate wave equation
Summary:
Let $\Omega $ be a bounded domain in ${\mathbb{R}}^n$ with a smooth boundary $\Gamma $. In this work we study the existence of solutions for the following boundary value problem: \[ \frac{\partial ^2 y}{\partial t^2}-M\biggl (\int _\Omega |\nabla y|^2\mathrm{d}x\biggr ) \Delta y -\frac{\partial }{\partial t}\Delta y=f(y) \quad \text{in} Q=\Omega \times (0,\infty ),.1 y=0 \quad \text{in} \Sigma _1=\Gamma _{\!1} \times (0,\infty ), M\biggl (\int _\Omega |\nabla y|^2\mathrm{d}x\biggr ) \frac{\partial y}{\partial \nu } +\frac{\partial }{\partial t}\Bigl (\frac{\partial y}{\partial \nu }\Bigr )=g \quad \text{in} \Sigma _0=\Gamma _{\!0} \times (0,\infty ), y(0)=y_0,\quad \frac{\partial y}{\partial t}\,(0)=y_1 \quad \text{in} \quad \Omega , \qquad \mathrm{(1)}\] where $M$ is a $C^1$-function such that $M(\lambda ) \ge \lambda _0 >0$ for every $\lambda \ge 0$ and $f(y)=|y|^\alpha y$ for $\alpha \ge 0$.
References:
[1] M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. S. Prates Filho and J. A. Soriano:
Existence and exponential decay for a Kirchhoff-Carrier model with viscosity. J. Math. Anal. Appl. 226 (1998), 40–60.
DOI 10.1006/jmaa.1998.6057 |
MR 1646453
[2] R. Ikehata:
On the existence of global solutions for some nonlinear hyperbolic equations with Neumann conditions. TRU Math. 24 (1988), 1–17.
MR 0999375 |
Zbl 0707.35094
[3] J. L. Lions:
Quelques méthode de résolution des probléme aux limites nonlinéaire. Dunod Gauthier–Villars, Paris (1969).
MR 0259693
[4] T. Matsuyama and R. Ikehata:
On global solutions and energy decay for the wave equations of Kirchhoff type with nonlinear damping terms. J. Math. Anal. Appl. 204 (1996), 729–753.
DOI 10.1006/jmaa.1996.0464 |
MR 1422769
[5] M. Nakao:
Asymptotic stability of the bounded or almost periodic solutions of the wave equations with nonlinear damping terms. J. Math. Anal. Appl. 58 (1977), 336–343.
DOI 10.1016/0022-247X(77)90211-6 |
MR 0437890
[7] K. Nishihara and Y. Yamada:
On global solutions of some degenerate quasilinear hyperbolic equation with dissipative damping terms. Funkcial. Ekvac. 33 (1990), 151–159.
MR 1065473