Article
Keywords:
$MV$-algebras; product; convex; embedding; direct; decomposition
Summary:
In this paper we apply the notion of the product $MV$-algebra in accordance with the definition given by B. Riečan. We investigate the convex embeddability of an $MV$-algebra into a product $MV$-algebra. We found sufficient conditions under which any two direct product decompositions of a product $MV$-algebra have isomorphic refinements.
References:
[1] G. Cattaneo and F. Lombardo:
Independent axiomatization for $MV$-algebras. Tatra Mt. Math. Publ. 15 (1998), 227–232.
MR 1655091
[2] R. Cignoli, I. M. I. D’Ottaviano and D. Mundici:
Algebraic Foundations of Many-Valued Reasoning. Kluwer Academic Publishers, Dordrecht, 2000.
MR 1786097
[3] P. Conrad:
Lattice Ordered Groups. Tulane University, 1971.
Zbl 0235.06006
[4] A. Dvurečenskij and A. DiNola:
Product $MV$-algebras. Multiple Valued Logic 6 (2001), 193–251.
MR 1777248
[6] L. Fuchs:
Partially Ordered Algebraic Systems. Pergamon Press, Oxford, 1964.
MR 0218283
[7] D. Gluschankof:
Cyclic ordered groups and $MV$-algebras. Czechoslovak Math. J. 43(118) (1993), 249–263.
MR 1211747 |
Zbl 0795.06015
[8] J. Jakubík:
Direct product decompositions of $MV$-algebras. Czechoslovak Math. J. 44(119) (1994), 725–739.
MR 1295146
[9] J. Jakubík:
On complete $MV$-algebras. Czechoslovak Math. J. 45(120) (1995), 473–480.
MR 1344513
[11] B. Riečan:
On the product $MV$-algebras. Tatra Mt. Math. Publ. 16 (1999), 143–149.
MR 1725292