Previous |  Up |  Next

Article

Keywords:
$MV$-algebras; product; convex; embedding; direct; decomposition
Summary:
In this paper we apply the notion of the product $MV$-algebra in accordance with the definition given by B. Riečan. We investigate the convex embeddability of an $MV$-algebra into a product $MV$-algebra. We found sufficient conditions under which any two direct product decompositions of a product $MV$-algebra have isomorphic refinements.
References:
[1] G.  Cattaneo and F.  Lombardo: Independent axiomatization for $MV$-algebras. Tatra Mt. Math. Publ. 15 (1998), 227–232. MR 1655091
[2] R.  Cignoli, I. M. I.  D’Ottaviano and D.  Mundici: Algebraic Foundations of Many-Valued Reasoning. Kluwer Academic Publishers, Dordrecht, 2000. MR 1786097
[3] P.  Conrad: Lattice Ordered Groups. Tulane University, 1971. Zbl 0235.06006
[4] A. Dvurečenskij and A. DiNola: Product $MV$-algebras. Multiple Valued Logic 6 (2001), 193–251. MR 1777248
[5] A.  Dvurečenskij and B.  Riečan: Weakly divisible $MV$-algebras and product. J.  Math. Anal. Appl. 234 (1999), 208–222. DOI 10.1006/jmaa.1999.6353 | MR 1694841
[6] L.  Fuchs: Partially Ordered Algebraic Systems. Pergamon Press, Oxford, 1964. MR 0218283
[7] D.  Gluschankof: Cyclic ordered groups and $MV$-algebras. Czechoslovak Math.  J. 43(118) (1993), 249–263. MR 1211747 | Zbl 0795.06015
[8] J.  Jakubík: Direct product decompositions of $MV$-algebras. Czechoslovak Math.  J. 44(119) (1994), 725–739. MR 1295146
[9] J.  Jakubík: On complete $MV$-algebras. Czechoslovak Math.  J. 45(120) (1995), 473–480. MR 1344513
[10] D.  Mundici: Interpretation of $AFC^*$-algebra in Łukasiewics sentential calculus. J.  Funct. Anal. 65 (1986), 15–63. DOI 10.1016/0022-1236(86)90015-7
[11] B.  Riečan: On the product $MV$-algebras. Tatra Mt. Math. Publ. 16 (1999), 143–149. MR 1725292
Partner of
EuDML logo