Article
Keywords:
singular measures; convolution operators
Summary:
Let $\varphi _1,\dots ,\varphi _n$ be real homogeneous functions in $C^\infty (\mathbb R^n-\lbrace 0\rbrace )$ of degree $k\ge 2$, let $\varphi (x) =(\varphi _1(x),\dots ,\varphi _n(x))$ and let $\mu $ be the Borel measure on $\mathbb R^{2n}$ given by \[ \mu (E) =\int _{\mathbb R^n}\chi _E(x,\varphi (x))\, |x|^{\gamma -n}\mathrm{d}x \] where $\mathrm{d}x$ denotes the Lebesgue measure on $\mathbb R^n$ and $\gamma >0$. Let $T_\mu $ be the convolution operator $T_\mu f(x)=(\mu *f)(x)$ and let \[ E_\mu =\lbrace (1/p,1/q)\:\Vert T_\mu \Vert _{p,q}<\infty ,\hspace{5.0pt}1\le p, \,q\le \infty \rbrace . \] Assume that, for $x\ne 0$, the following two conditions hold: $\det ({\mathrm d}^2\varphi (x) h)$ vanishes only at $h=0$ and $\det ({\mathrm d} \varphi (x)) \ne 0$. In this paper we show that if $\gamma >n(k+1)/3$ then $E_\mu $ is the empty set and if $\gamma \le n(k+1)/3$ then $E_\mu $ is the closed segment with endpoints $D=\bigl (1-\frac{\gamma }{n(k+1)},1-\frac{2\gamma }{n(k+1)}\bigr )$ and $D^{\prime }=\bigl (\frac{2\gamma }{n(1+k)},\frac{\gamma }{n(1+k)}\bigr )$. Also, we give some examples.
References:
[1] M. Christ:
Endpoint bounds for singular fractional integral operators. UCLA Preprint (1988).
MR 0951506
[3] E. Ferreyra, T. Godoy and M. Urciuolo:
Convolution operators with fractional measures associated to holomorphic functions. Acta Math. Hungar 92 (2001), 27–38.
DOI 10.1023/A:1013795825882 |
MR 1924246
[5] F. Ricci: Limitatezza $L^p$-$L^q$ per operatori di convoluzione definiti da misure singolari in $R^n$. Bollettino U.M.I. 7 11-A (1997), 237–252.
[7] E. M. Stein:
Singular Integrals and Differentiability Properties of Functions. Princeton University Press, 1970.
MR 0290095 |
Zbl 0207.13501
[8] E. M. Stein:
Harmonic Analysis. Real Variable Methods, Orthogonality and Oscillatory Integrals. Princeton University Press, 1993.
MR 1232192 |
Zbl 0821.42001