[2] B. A. Barnes, G. J. Murphy, M. R. F. Smyth and T. T. West:
Riesz and Fredholm Theory in Banach Algebras. Pitman, Boston-London-Melbourne, 1982.
MR 0668516
[7] R. E. Harte:
Fredholm, Weyl and Browder theory. Proc. Royal Irish Academy Vol. 85A, 1985, pp. 151–176.
MR 0845539 |
Zbl 0567.47001
[8] R. E. Harte:
Invertibility and Singularity for Bounded Linear Operators. Marcel Dekker, New York-Basel, 1988.
MR 0920812 |
Zbl 0636.47001
[10] R. E. Harte and H. Raubenheimer:
Fredholm, Weyl and Browder theory III. Proc. Royal Irish Academy Vol. 95A, 1995, pp. 11–16.
MR 1369040
[11] R. E. Harte and A. W. Wickstead:
Boundaries, hulls and spectral mapping theorems. Proceedings of the Royal Irish Academy Vol 81A, 1981, pp. 201–208.
MR 0654819
[12] V. Kordula and V. Müller:
Axiomatic theory of spectrum. Studia Math. 119 (1996), 109–128.
MR 1391471
[13] L. Lindeboom and H. Raubenheimer:
A note on the singular spectrum. Extracta Math. 13 (1998), 349–357.
MR 1695568
[17] T. Mouton and H. Raubenheimer:
More Fredholm theory relative to a Banach algebra homomorphism. Proceedings of the Royal Irish Academy Vol. 93A, 1993, pp. 17–25.
MR 1241836
[19] J. Puhl:
The trace of finite and nuclear elements in Banach algebras. Czechoslovak Math. J. 28(103) (1978), 656–676.
MR 0506439 |
Zbl 0394.46041
[21] A. E. Taylor and D. C. Lay:
Introduction to Functional Analysis. 2nd ed. John Wiley, New York, 1980.
MR 0564653