Previous |  Up |  Next

Article

Keywords:
principal element; primary element; Prüfer lattice
Summary:
In this paper we study primary elements in Prüfer lattices and characterize $\alpha $-lattices in terms of Prüfer lattices. Next we study weak ZPI-lattices and characterize almost principal element lattices and principal element lattices in terms of ZPI-lattices.
References:
[1] D. D.  Anderson: Abstract commutative ideal theory without chain condition. Algebra Universalis 6 (1976), 131–145. DOI 10.1007/BF02485825 | MR 0419310 | Zbl 0355.06022
[2] D. D.  Anderson, J. Matijevic and W. Nichols: The Krull intersection theorem  II. Pacific J. Math. 66 (1976), 15–22. DOI 10.2140/pjm.1976.66.15 | MR 0435062
[3] D. D.  Anderson, C.  Jayaram and P. A.  Phiri: Bear lattices. Acta. Sci. Math. (Szeged) 59 (1994), 61–74. MR 1285430
[4] D. D.  Anderson and E. W. Johnson: Dilworth’s principal elements. Algebra Universalis 36 (1996), 392–404. DOI 10.1007/BF01236764 | MR 1408734
[5] D. D.  Anderson and C.  Jayaram: Principal element lattices. Czechoslovak Math.  J. 46(121) (1996), 99–109. MR 1371692
[6] H. S.  Butts and W.  Smith: Prüfer rings. Math. Z. 95 (1967), 196–211. MR 0209271
[7] R. P.  Dilworth: Abstract commutative ideal theory. Pacific J. Math. 12 (1962), 481–498. DOI 10.2140/pjm.1962.12.481 | MR 0143781 | Zbl 0111.04104
[8] C.  Jayaram and E. W.  Johnson: Almost principal element lattices. Internat. J. Math. Math. Sci. 18 (1995), 535–538. DOI 10.1155/S0161171295000676 | MR 1331954
[9] C.  Jayaram and E. W.  Johnson: $s$-prime elements in multiplicative lattices. Period. Math. Hungar. 31 (1995), 201–208. DOI 10.1007/BF01882195 | MR 1610262
[10] C.  Jayaram and E. W.  Johnson: Some results on almost principal element lattices. Period. Math. Hungar. 31 (1995), 33–42. DOI 10.1007/BF01876351 | MR 1349291
[11] C.  Jayaram and E. W.  Johnson: Primary elements and prime power elements in multiplicative lattices. Tamkang J. Math. 27 (1996), 111–116. MR 1407005
[12] C.  Jayaram and E. W.  Johnson: Dedekind lattices. Acta. Sci. Math. (Szeged) 63 (1997), 367–378. MR 1480486
[13] C.  Jayaram and E. W.  Johnson: $\sigma $-elements in multiplicative lattices. Czechoslovak Math.  J. 48(123) (1998), 641–651. DOI 10.1023/A:1022475220032 | MR 1658225
[14] E. W.  Johnson and J. P. Lediaev: Representable distributive Noether lattices. Pacific J. Math. 28 (1969), 561–564. DOI 10.2140/pjm.1969.28.561 | MR 0255456
[15] P. J.  McCarthy: Arithmetical rings and multiplicative lattices. Ann. Math. Pura. Appl. 82 (1969), 267–274. DOI 10.1007/BF02410800 | MR 0248124 | Zbl 0216.05103
Partner of
EuDML logo