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1. Introduction

Regularities are introduced and studied in [12] and [15] to give an axiomatic theory
for spectra in literature which do not fit into the axiomatic theory of Żelazko [22]. In

this note we investigate the relationship between the regularities and the Fredholm
theory in a Banach algebra.

All algebras in this paper are complex and unital. Denote by A−1 the group of
invertible elements in a Banach algebra A and by σ(a, A) = {λ ∈ � | a− λ /∈ A−1}
the ordinary spectrum of a ∈ A. When no confusion can arise we write simply σ(a).
If K ⊂ � , we use the symbol accK to indicate the set of accumulation points of K
and the symbol iso K for the set of isolated points of K. The topological boundary
is denoted by ∂K and the closure by K. If K is a bounded subset of � then ηK

designates the connected hull of K. By an ideal in A we mean a two sided ideal in A.
An ideal J in A is said to be inessential [1, p. 106] if

a ∈ J =⇒ accσ(a) ⊂ {0},

so that the spectrum of an element of J is either finite or a sequence converging to
zero. If J is a closed inessential ideal in A then by a result of Aupetit [1, Theo-
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rem 5.7.4 (iii)] and [17, Theorem 5.3] we have

(1.1) a ∈ A =⇒ accσ(a) ⊂ ησ(a+ J, A/J).

We will say a closed ideal J in A is s-inessential whenever

a ∈ A =⇒ accσ(a) ⊂ σ(a+ J, A/J).

The radical of A will be denoted by RadA and A is said to be semisimple if
RadA = {0}. A Banach algebra A is called semiprime if 0 �= u ∈ A implies there

exists x ∈ A such that uxu �= 0. All semisimple Banach algebras are semiprime.
An element a ∈ A is quasinilpotent if σ(a) = {0}. The set of these elements will be
denoted by QN(A). Recall that if J is a closed ideal in A then b ∈ A is called Riesz
relative to J if b + J ∈ QN(A/J), see [2, Section R.1]. The set khJ is defined by

khJ = {b ∈ A | b + J ∈ RadA/J}. Clearly, this set is contained in the set of Riesz
elements relative to J . An element a �= 0 in a semiprime Banach algebra A is called

rank one if there exists a linear functional τa on A such that axa = τa(x)a for all
x ∈ A. For properties of these elements we refer to [19]. The finite elements of A,

denoted by F(A), is the set of all a ∈ A of the form a =
n∑

i=1
ai with each ai a rank

one element. In the case of a semiprime Banach algebra the set of finite elements
coincides with the socle of A, i.e. SocA = F(A). By [19, Lemma 2.7] F(A) is an
ideal in A.
We call an element a ∈ A regular if it has a generalized inverse in A, b ∈ A for

which a = aba, and write
óA = {a ∈ A | a ∈ aAa}

for the set of regular elements. These include both the left and right invertible
elements,

(1.2) A−1left ∪A−1right ⊂ óA

as well as the idempotents A• = {a ∈ A | a2 = a}. The decomposably regular ele-
ments are those which admit invertible generalized inverses; they are those elements
which can be written as the product of an invertible and an idempotent:

A−1A• = A•A−1 = {a ∈ A | a ∈ aA−1a} ⊂ óA.

It is then familiar [8, Theorem 7.3.4] that

(1.3) A−1A• = óA ∩A−1.

For properties of the regular and decomposably regular elements we refer to [7], [8],

[10].
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2. Regularities

In this section we gather basic information on regularities as developed in [12].

2.1. Definition [12, Definition 1.2]. A nonempty subset R of a Banach alge-
bra A is called a regularity if
1. a ∈ A and n ∈ � then a ∈ R ⇔ an ∈ R,
2. a, b, c, d are mutually commuting elements of A and ac+bd = 1 then ab ∈ R ⇔

a ∈ R and b ∈ R.

2.2. Proposition [12, Proposition 1.3]. Let R be a regularity in a Banach
algebra A.

1) If a, b ∈ A, ab = ba and a ∈ A−1 then ab ∈ R ⇔ a ∈ R and b ∈ R.
2) A−1 ⊂ R.
A regularity R in A defines a mapping σ̃R from A into subsets of � by σ̃R(a) =

{λ ∈ � | a−λ /∈ R} (a ∈ A). This mapping will be called the spectrum corresponding
to R. When no confusion can arise we will write σ̃(a). For results on the spectrum

arising from the regularities R5 and R6, [12, p. 111], we refer to [13].
Consider the following condition:

(P1) ab ∈ R ⇔ a ∈ R and b ∈ R for all commuting elements a, b ∈ A.
Clearly a nonempty subset R of A satisfying (P1) is a regularity.

3. Subalgebras

In this section we investigate how the spectrum corresponding to a regularity
depends on the algebra. For the regularityA−1 of invertible elements this dependence

is familiar [21, Theorem VII.2.6] and [4].

3.1. Theorem. Let A and B be Banach algebras such that 1 ∈ B ⊂ A. Suppose

RA is a regularity in A and RB is a regularity in B such that RB ⊂ RA.
1) Then σ̃RA(b, A) ⊂ σ̃RB (b, B) for every b ∈ B.

2) If ∂RB ∩ RA = ∅ then ∂σ̃RB(b, B) ⊂ σ̃RA(b, A) for all b ∈ B such that

σ̃RB(b, B) �= ∅.
�����. 1) Let b ∈ B. If λ /∈ σ̃RB(b, B) then b − λ ∈ RB ⊂ RA and so

λ /∈ σ̃RA(b, A).
2) Let b ∈ B and λ ∈ ∂σ̃RB (b, B). Then there is a sequence (λn) in � \ σ̃RB (b, B)

such that λn → λ and a sequence (µn) in σ̃RB(b, B) such that µn → λ. Then (b−λn)
is a sequence in RB such that b− λn → b − λ and (b− µn) is a sequence in B \ RB
such that b − µn → b − λ. Consequently, b − λ ∈ ∂RB and since ∂RB ∩ RA = ∅ it
follows that b − λ /∈ RA and so λ ∈ σ̃RA(b, A). �
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The above theorem applies to the regularity R2 = A−1 [12, p. 111] of invertible

elements: Let A and B be Banach algebras such that 1 ∈ B ⊂ A. Then in general
B−1 ⊂ A−1 and if B is a closed subalgebra of A then it is well known that ∂B−1 ∩
A−1 = ∅ [21, p. 398]. The proof of the next result follows from the definition of a
regularity and will be omitted.

3.2. Proposition. Let A and B be Banach algebras such that 1 ∈ B ⊂ A. If RA
is a regularity in A and RB is a regularity in B then RA ∩RB is a regularity in B.

3.3. Corollary. Let A and B be Banach algebras such that 1 ∈ B ⊂ A. If RA
is a regularity in A then RA ∩ B is a regularity in B.

For the regularity of invertible elements it is well known that if A is a C∗ algebra
and if B is a closed C∗ subalgebra of A then B−1 = A−1 ∩ B, see the proof of

Theorem VII.6.5 in [21]. The proof of the next result follows from Corollary 3.3 and
Theorem 3.1.1) and will be omitted.

3.4. Proposition. Let A and B be Banach algebras such that 1 ∈ B ⊂ A.

Suppose RA is a regularity in A. Then σ̃RA(b, A) = σ̃RA∩B(b, B) for every b ∈ B.

4. The radical

We provide a characterization of the radical in a Banach algebra involving a reg-
ularity in the algebra. The radical RadA of A is the intersection of all maximal left

(or right) ideals of A and it is familiar [1, Theorem 3.1.3] that

RadA = {a ∈ A | 1−Aa ⊂ A−1}.

It can also be shown that

RadA = {a ∈ A | Aa ⊂ QN(A)}.

4.1. Proposition. If R is a regularity in a Banach algebra A then RadA = {a ∈
A | Ra ⊂ QN(A).

�����. Since R ⊂ A it follows that RadA ⊂ {a ∈ A | Ra ⊂ QN(A)}. To
prove the nontrivial inclusion suppose a ∈ {a ∈ A | Ra ⊂ QN(A)}. Let d ∈ A. Since

A is a complex Banach algebra, A = A−1 + A−1 and so d = d1 + d2 with di ∈ A−1

(i = 1, 2). Since A−1 ⊂ R by Proposition 2.2.2), it follows from our assumption that
d1a, (1− d1a)−1d2a ∈ QN(A) and so 1− da = (1− d1a)(1− (1− d1a)−1d2a) ∈ A−1.
We have shown that a ∈ {a ∈ A | 1−Aa ⊂ A−1}. �
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Since A−1 is a regularity it follows at once from the above proposition that RadA =

{a ∈ A | A−1a ⊂ QN(A)}. This result was proved in [18, Remark 4] by different
methods.
Let X be a complex Banach space and let T be a subset of X satisfying αT ⊂ T

for all 0 �= α ∈ � . Following [14] let P (T ) = {x ∈ X | x+ T ⊂ T }. If A is a Banach
algebra and R a regularity in A then by [14, Lemma 2.1] P (R) is a linear subspace
of A and if R is an open subset of A then P (R) is closed in A. If in addition A is a
commutative Banach algebra then by Proposition 2.2 A−1R ⊂ R and RA−1 ⊂ R.
In view of [14, Lemma 2.3] P (R) is an ideal in A.

4.2. Theorem. Let R be a regularity in a Banach algebra A such that ∂A−1 ∩
R = ∅. Then
1) ∂σ(a, A) ⊂ σ̃R(a, A) ⊂ σ(a, A) for all a ∈ A.

2) acc σ̃R(a, A) ⊂ accσ(a, A).
3) ησ(a, A) = ησ̃R(a, A).

4) P (R) ⊂ RadA.

�����. 1) Let A = B in Theorem 3.1 and employ Proposition 2.2.2).

2) Follows from 1).
3) By 1) and the fact that the spectrum is closed it follows that σ̃R(a, A) ⊂ σ(a, A)

and so ησ̃R(a, A) = ησ̃R(a, A) ⊂ ησ(a, A), see the remarks preceding Lemma 1.1

in [11]. It also follows from 1) that ∂σ(a, A) ⊂ σ̃R(a, A) and so by [11, Theorem 1.2]
σ(a, A) ⊂ ησ̃R(a, A) = ησ̃R(a, A). Consequently, ησ(a, A) ⊂ ησ̃R(a, A). If we

combine these remarks we obtain ησ(a, A) = ησ̃R(a, A).
4) Since R is a regularity it follows from Proposition 2.2 that αR ⊂ R for every

0 �= α ∈ � . Since A−1 ⊂ R, by Proposition 2.2.2), and since A−1 is an open subset
of A it follows from our assumption and Lemma 2.2 in [14] that P (R) ⊂ P (A−1) =

RadA [14, Theorem 2.5]. �

We mention illustrations of the above theorem: If A is a Banach algebra then for

the regularities Ri (i = 2, 3, 4, 5, 6) [12, p. 111] it is familiar that ∂A−1 ∩ Ri = ∅,
cf. [21, Theorem VII.2.5] and [3, Proposition].

5. Perturbation results

In this section we study the behaviour of elements belonging to a regularity under
perturbations by rank one elements, inessential elements and Riesz elements.

5.1. Theorem. Let A be a Banach algebra and suppose R is a regularity of A
such that ∂A−1 ∩R = ∅.

569



1) If J is a closed inessential ideal of A, a ∈ A and b ∈ J then acc σ̃R(a + b, A) ⊂
ησ̃R(a, A).

2) If J is a closed inessential ideal of A, a ∈ A and b is Riesz relative to J with

ab = ba then acc σ̃R(a+ b, A) ⊂ ησ̃R(a, A).

�����. 1) Suppose J is a closed inessential ideal of A and b ∈ J . It follows

from 1.1 that

accσ(a+ b, A) ⊂ ησ(a+ b+ J, A/J) = ησ(a+ J, A/J) ⊂ ησ(a, A).

If we combine this with Theorem 4.2.2) and 3) we obtain acc σ̃R(a + b, A) ⊂
ησ̃R(a, A).

2) The proof of this statement follows exactly in the same way as 1) if we observe
that b+ J ∈ QN(A/J) and a+ J and b+ J commute in A/J implies that σ(a+ b+

J, A/J) = σ(a + J, A/J). �

5.2. Corollary. Let A be a Banach algebra and suppose R is a regularity of A
such that ∂A−1 ∩R = ∅. If a ∈ A and b ∈ RadA then acc σ̃R(a+ b, A) ⊂ ησ̃R(a, A).

5.3. Corollary. Let A be a semisimple Banach algebra and suppose R is a
regularity of A such that ∂A−1 ∩ R = ∅. If a ∈ A and if b ∈ A is rank one then

acc σ̃R(a+ b, A) ⊂ ησ̃R(a, A).

�����. If b ∈ A is rank one, then it belongs to the inessential ideal F(A) of
finite elements [19, Sections 2 and 3]. By [1, Corollary 5.7.6] the closure F(A) of
F(A) is also an inessential ideal. �

One can also provide a direct proof of Corollary 5.3 if one combines [9, Theorem 5]
and Theorem 4.2.2) and 3).

5.4. Theorem. Let A and B be Banach algebras and T : A → B a bounded

homomorphism with closed range. If R is a regularity of A and M is a regularity

of B with ∂B−1 ∩M = ∅ then for each a ∈ A

⋂

Tb=0

σ̃R(a+ b, A) ⊂ ησ̃M(Ta, B).

�����. This follows from [5, Theorem 3], Proposition 2.2.2) and Theorem 4.2 3).

�

For the spectrum and singular spectrum the results in this section are familiar:

e.g. [13, Section 3], [5, Theorem 5], [17, Theorem 5.3] and [1, Theorem 5.7.4 (iii)].
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6. Regular elements

It is well known [7, Examples 4.5 and 4.6] and [10, Examples 1 and 2] that the

elements of óA and A−1A• do not multiply well and so in general neither óA nor A−1A•

is a regularity in A. However, we have the following

6.1. Proposition [12, Lemma 2.8]. Let a, b, c, d be mutually commuting ele-

ments in a Banach algebra A with ac+ bd = 1. Then ab ∈ óA if and only if a, b ∈ óA.

6.2. Lemma. Let A be a semiprime Banach algebra. Then F(A) ⊂ A−1A• ⊂ óA.

�����. We prove first that F(A) ⊂ óA. If u ∈ F(A) then by [19, Theorem 3.4]
there is an idempotent p ∈ F(A) ∩ uA such that u = pu. Since p ∈ uA, we have

p = uv for some v ∈ A. Consequently, u = uvu which proves that u is regular.
This together with F(A) being an inessential ideal in A gives F(A) ⊂ A−1A• [10,

Theorem 7 (7.2)]. �

6.3. Theorem. Let A be a semiprime Banach algebra. Then óA+ F(A) ⊂ óA.

�����. By the last lemma F(A) ⊂ óA. The result now follows from [8, (7.3.2.6)].
�

This result was proved by Kordula and Müller [12, Lemma 2.9] in the algebra

L(X) of bounded linear operators on a Banach space X by different methods if one
recalls that in the algebra L(X) the ideal of finite elements coincides with the ideal
of finite rank operators, see [19].

Let J be an ideal in A. We say a ∈ A is J-Fredholm if a + J is invertible in the

quotient algebra A/J . Recall [12, p. 111] that R7 = {a ∈ A | a is J-Fredholm} is a
set satisfying (P1) and is therefore a regularity in A.

6.4. Proposition. Suppose J is an ideal in A such that J ⊂ óA. Then R7 ⊂ óA.

�����. If a ∈ R7 then a is J-Fredholm and so by 1.2, we have a + J ∈ øA/J .
Since J ⊂ óA, it follows from [8, Theorem 7.3.3] that a ∈ óA. �

6.5. Theorem. If J is a closed s-inessential ideal in A such that J ⊂ óA then
R7 ⊂ A−1A•.

�����. By Proposition 6.4 we have that R7 ⊂ óA. Also, if a ∈ R7 then
0 /∈ σ(a + J, A/J). In view of J being s-inessential it follows that a ∈ A−1. By 1.3
we conclude a ∈ A−1A•. �
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6.6. Theorem. Let A be a semisimple Banach algebra and let J be an inessential
ideal in A. Then J ∩ óA ⊂ F(A).

�����. Suppose a = aa′a for some a′ in A. If a ∈ J then in view of [16,
Theorem 1.4] the idempotent a′a ∈ J ⊂ khF(A). By [20, Theorem 4.6] we have
a′a ∈ F(A). Since F(A) is an ideal in A it follows that a ∈ F(A). �

This result was proved by Harte [7, Theorem 4.2 (4.2.1)] in the algebra L(X) of
bounded linear operators on a Banach space X .

7. An example

In this section we provide an example of a regularity in a Banach algebra and

investigate how this regularity is related to the set of decomposably regular elements.

An element a ∈ A is said to be almost invertible if 0 /∈ accσ(a) [6]. We have the
following implications:

invertible =⇒ almost invertible J-Fredholm =⇒ J-Fredholm.

Let J be a closed ideal in a Banach algebra A. Denote

R0(J) = {a ∈ A | a is almost invertible J-Fredholm}.

7.1. Proposition. Suppose a closed ideal J in A is s-inessential. Then R0(J) is
a regularity in A.

�����. We prove that R0(J) satisfies (P1). If a, b ∈ R0(J) with ab = ba then
ab is J-Fredholm. Since σ(ab) ⊂ σ(a) · σ(b) it follows that ab ∈ R0(J). Conversely,
if ab ∈ R0(J) then a and b are J-Fredholm because ab = ba. This together with J

s-inessential gives a, b ∈ R0(J). �

7.2. Corollary. σ̃R0(J)(a) = accσ(a) ∪ σ(a+ J, A/J) for every a ∈ A.

�����. This follows from the definition of R0(J). �

We will prove later that R0(J) is actually an open regularity, see Theorem 7.5.
However, to prove a stronger result we need the following

7.3. Definition. Let J be a closed ideal in A and a ∈ A. We say that a is
J-Browder if a = x+ y with x ∈ A−1, y ∈ J and xy = yx.
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Then we have the following implications [6, 16]:

(7.4) invertible =⇒ almost invertible J-Fredholm =⇒ J-Browder =⇒ J-Fredholm.

If A and B are Banach algebras then the homomorphism T : A → B is said to have
the Riesz property if its kernel T−1(0) is an inessential ideal. If J is a closed inessen-

tial ideal then the almost invertible J-Fredholm and J-Browder elements coincide [6,
Theorem 1] or [17, Corollary 3.6].

7.5. Theorem. Suppose J is a closed inessential ideal in A. Then R0(J) is an
open regularity in A.

�����. We prove that R0(J) satisfies (P1). If a, b ∈ R0(J) with ab = ba

then it follows as in the proof of Proposition 7.1 that ab ∈ R0(J). Conversely, if
ab ∈ R0(J) then by 7.4 ab is J-Browder. In view of ab = ba and J being inessential

(meaning that the quotient map A → A/J has the Riesz property) it follows from [8,
Theorem 7.7.6] that both a and b are J-Browder. By the remarks following 7.4 we

have a, b ∈ R0(J).
We prove finally that R0(J) is open. Let x ∈ R0(J) and let ε > 0 satisfy {λ ∈

� | |λ| < 3ε} ∩ σ(x) ⊂ {0}. Since σ(·) and σ(·, A/J) are both upper semicontinuous
there exists δ > 0 such that if ‖x− y‖ < δ then y is J-Fredholm,

σ(y) ⊂ {λ ∈ � | |λ| < ε} ∪ {λ ∈ � | |λ| > 2ε}

and

σ(y + J, A/J) ⊂ {λ ∈ � | |λ| � 2ε}.

However, since J is inessential, σ(y) \ σ(y + J, A/J) consists of isolated points and

some of the holes of σ(y + J, A/J) [4, Theorem 6.1]. Hence either 0 /∈ σ(y) or
0 ∈ isoσ(y) and so y is almost invertible. We have shown that y ∈ R0(J). �

The above theorem was proved in the operator algebra L(X) of bounded linear
operators on a Banach space X by Kordula and Müller [12, Theorem 2.1].

7.6. Theorem. Suppose J is a closed inessential ideal in a semisimple Banach

algebra A. Then R0(J) ⊂ A−1A•.

�����. If a ∈ R0(J) then a is almost invertible and so a ∈ A−1. Since a is
J-Fredholm and since J ⊂ khF(A) [16, Theorem 4.6] it follows that a is khF(A)-
Fredholm. In view of F(A) and khF(A) having the same set of idempotents, see
the remark following Lemma 5.7.1 in [1], we have by [1, Theorem 5.7.2] that a is

F(A)-Fredholm. By Lemma 6.2 and Proposition 6.4 we obtain a ∈ óA. It follows
from 1.3 that a ∈ A−1A•. �
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