[AnDu80] I. M. Anderson and T. Duchamp:
On the existence of global variational principles. Amer. Math. J. 102 (1980), 781–868.
DOI 10.2307/2374195 |
MR 0590637
[FFP98] L. Fatibene, M. Francaviglia and M. Palese:
Conservation laws and variational sequences in gauge-natural theories. Math. Proc. Cambridge Phil. Soc. 130 (2001), 555–569.
DOI 10.1017/S0305004101004881 |
MR 1816809
[Fe84] M. Ferraris:
Fibered connections and global Poincaré-Cartan forms in higher-order calculus of variations. Proc. Diff. Geom. and its Appl. (Nové Město na Moravě, 1983), D. Krupka (ed.), J. E. Purkyně University, Brno, 1984, pp. 61–91.
MR 0793200 |
Zbl 0564.53013
[FeFr91] M. Ferraris and M. Francaviglia:
The Lagrangian approach to conserved quantities in general relativity. Mechanics, Analysis and Geometry: 200 Years after Lagrange, M. Francaviglia (ed.), Elsevier Science Publishers B. V., Amsterdam, 1991, pp. 451–488.
MR 1098527
[FPV98] M. Francaviglia, M. Palese and R. Vitolo:
Superpotentials in variational sequences. Proc. VII Conf. Diff. Geom. and Appl., Satellite Conf. of ICM in Berlin (Brno 1998), I. Kolář et al. (eds.), Masaryk University, Brno, 1999, pp. 469–480.
MR 1708936
[GaMu82] P. L. Garcia and J. Muñoz:
On the geometrical structure of higher order variational calculus. Proc. IUTAM-ISIMM Symp. on Modern Developments in Anal. Mech. (Torino, 1982), S. Benenti, M. Francaviglia and A. Lichnerowicz (eds.), Tecnoprint, Bologna, 1983, pp. 127–147.
MR 0773483
[KMS93] I. Kolář, P. W. Michor and J. Slovák:
Natural Operations in Differential Geometry. Springer-Verlag, New York, 1993.
MR 1202431
[Kol80] I. Kolář:
Lie derivatives and higher order Lagrangians. Proc. Diff. Geom. and its Appl. (Nové Město na Moravě, 1980), O. Kowalski (ed.), Univerzita Karlova, Praha, 1981, pp. 117–123.
MR 0663219
[Kru73] D. Krupka: Some geometric aspects of variational problems in fibred manifolds. Folia Fac. Sci. Nat. UJEP Brunensis 14, J. E. Purkyně Univ., Brno (1973), 1–65.
[Kru90] D. Krupka:
Variational sequences on finite order jet spaces. Proc. Diff. Geom. and its Appl. (Brno, Czech Republic, 1989), J. Janyška, D. Krupka (eds.), World Scientific, Singapore, 1990, pp. 236–254.
MR 1062026 |
Zbl 0813.58014
[Kru93] D. Krupka:
Topics in the calculus of variations: Finite order variational sequences. Proc. Diff. Geom. and its Appl, Opava, 1993, pp. 473–495.
MR 1255563 |
Zbl 0811.58018
[KrTr74] D. Krupka and A. Trautman:
General invariance of Lagrangian structures. Bull. Acad. Polon. Sci., Math. Astr. Phys. 22 (1974), 207–211.
MR 0345130
[MaMo83a] L. Mangiarotti and M. Modugno:
Fibered spaces, jet spaces and connections for field theories. Proc. Int. Meet. on Geom. and Phys., Pitagora Editrice, Bologna, 1983, pp. 135–165.
MR 0760841
[Nov74] J. Novotný: Modern methods of differential geometry and the conservation laws problem. Folia Fac. Sci. Nat. UJEP Brunensis (Physica) 19 (1974), 1–55.
[Sau89] D. J. Saunders:
The Geometry of Jet Bundles. Cambridge Univ. Press, Cambridge, 1989.
MR 0989588 |
Zbl 0665.58002
[Tra96] A. Trautman:
A metaphysical remark on variational principles. Acta Phys. Pol. B 27 (1996), 839–848.
MR 1388335 |
Zbl 0966.58503
[Vin77] A. M. Vinogradov:
On the algebro-geometric foundations of Lagrangian field theory. Soviet Math. Dokl. 18 (1977), 1200–1204.
Zbl 0403.58005
[Vin78] A. M. Vinogradov: A spectral sequence associated with a non-linear differential equation, and algebro-geometric foundations of Lagrangian field theory with constraints. Soviet Math. Dokl. 19 (1978), 144–148.
[Vit98b] R. Vitolo:
A new infinite order formulation of variational sequences. Arch. Math. Univ. Brunensis 34 (1998), 483–504.
MR 1679643 |
Zbl 0970.58002
[Wel80] R. O. Wells:
Differential Analysis on Complex Manifolds (GTM, n. 65). Springer-Verlag, Berlin, 1980.
MR 0608414