Previous |  Up |  Next

Article

Keywords:
semigroup; abelian; commutative; finitely generated; positive definite; completely positive definite; character
Summary:
We characterize finitely generated abelian semigroups such that every completely positive definite function (a function all of whose shifts are positive definite) is an integral of nonnegative miltiplicative real-valued functions (called nonnegative characters).
References:
[1] N. I.  Akhiezer: The Classical Moment Problem. Oliver and Boyd, Edinburgh, 1965. Zbl 0173.41001
[2] C.  Berg: Positive definite and related functions on semigroups. In: The Analytical and Topological Theory of Semigroups, K. H.  Hofmann, J. D.  Lawson and J. S.  Pym (eds.), Walter de Gruyter &  Co., Berlin, 1990. MR 1072791 | Zbl 0722.43005
[3] C.  Berg, J. P. R.  Christensen and C. U.  Jensen: A remark on the multidimensional moment problem. Math. Ann. 243 (1979), 163–169. DOI 10.1007/BF01420423 | MR 0543726
[4] C.  Berg, J. P. R.  Christensen and P.  Ressel: Harmonic Analysis on Semigroups. Springer-Verlag, Berlin, 1984. MR 0747302
[5] T. M.  Bisgaard: Extension of characters on $*$-semigroups. Math. Ann. 282 (1988), 251–258. DOI 10.1007/BF01456974 | MR 0963015
[6] T. M.  Bisgaard: Separation by characters or positive definite functions. Semigroup Forum 53 (1996), 317–320. DOI 10.1007/BF02574146 | MR 1406777 | Zbl 0867.43002
[7] T. M.  Bisgaard: Semigroups of moment functions. Ark. Mat. 35 (1997), 127–156. DOI 10.1007/BF02559595 | MR 1443038 | Zbl 0886.43006
[8] T. M.  Bisgaard: On perfect semigroups. Acta Math. Hung. 79 (1998), 269–294. DOI 10.1023/A:1006511012031 | MR 1619811 | Zbl 0909.20047
[9] T. M.  Bisgaard: Extensions of Hamburger’s Theorem. Semigroup Forum 57 (1998), 397–429. DOI 10.1007/PL00005988 | MR 1640879 | Zbl 0923.47010
[10] T. M.  Bisgaard: A method of moments for semigroups  $S$ without zero, but satisfying $S=S+S$. Semigroup Forum 61 (2000), 317–332. DOI 10.1007/PL00006030 | MR 1832308 | Zbl 0967.43001
[11] T. M.  Bisgaard: Semiperfect countable $C$-finite semigroups satisfying $S=S+S$. Math. Ann. 315 (1999), 141–168. DOI 10.1007/s002080050320 | MR 1717546
[12] T. M.  Bisgaard and P.  Ressel: Unique disintegration of arbitrary positive definite functions on $*$-divisible semigroups. Math.  Z. 200 (1989), 511–525. MR 0987584
[13] A.  Brøndsted: An Introduction to Convex Polytopes. Springer-Verlag, Berlin, 1983. MR 0683612
[14] A. H.  Clifford and G. B.  Preston: The Algebraic Theory of Semigroups. American Mathematical Society, Providence, 1961. MR 0132791
[15] D.  Hilbert: Über die Darstellung definiter Formen als Summe von Formenquadraten. Math. Ann. 32 (1888), 342–350. DOI 10.1007/BF01443605 | MR 1510517
[16] W. B.  Jones, O.  Njåstad and W. J.  Thron: Orthogonal Laurent polynomials and the strong Hamburger moment problem. J.  Math. Anal. Appl. 98 (1984), 528–554. DOI 10.1016/0022-247X(84)90267-1 | MR 0730525
[17] S. L.  Lauritzen: Extremal Families and Systems of Sufficient Statistics. Springer-Verlag, Berlin, 1988. MR 0971253 | Zbl 0681.62009
[18] A. W.  Marshall and I.  Olkin: Inequalities: Theory of Majorization and its Applications. Academic Press, New York, 1979. MR 0552278
[19] N.  Sakakibara: Moment problems on subsemigroups of $N_0^k$ and $Z^k$. Semigroup Forum 45 (1992), 241–248. DOI 10.1007/BF03025764 | MR 1171848
[20] K.  Schmüdgen: An example of a positive polynomial which is not a sum of squares of polynomials. A positive, but not strongly positive functional. Math. Nachr. 88 (1979), 385–390. DOI 10.1002/mana.19790880130 | MR 0543417
[21] T. J.  Stieltjes: Recherches sur les fractions continues. Ann. Fac. Sci. Toulouse Math. 8 (1894), 1–122. DOI 10.5802/afst.108 | MR 1508159
Partner of
EuDML logo