Previous |  Up |  Next

Article

Keywords:
$FK$-space; wedge $FK$-space; weak wedge $FK$-space; compact operator; matrix mapping
Summary:
In this paper we deal with Cesàro wedge and weak Cesàro wedge $FK$-spaces, and give several characterizations. Some applications of these spaces to general summability domains are also studied.
References:
[1] G.  Bennett: The Glinding Humps technique for $FK$-spaces. Trans. Amer. Math. Soc. 166 (1972), 285–292. MR 0296564
[2] G.  Bennett: A new class of sequence spaces with applications in summability theory. J.  Reine Angew. Math. 266 (1974), 49–75. MR 0344846 | Zbl 0277.46012
[3] N.  Dunford and J. T. Schwartz: Linear Operators. Interscience Publishers, New York, 1958. MR 0117523
[4] G.  Goes and S. Goes: Sequences of bounded variation and sequences of Fourier coefficients. I. Math. Z. 118 (1970), 93–102. DOI 10.1007/BF01110177 | MR 0438019
[5] G.  Goes: Sequences of bounded variation and sequences of Fourier coefficients. II. J. Math. Anal. Appl. 39 (1972), 477–494. DOI 10.1016/0022-247X(72)90218-1 | MR 0447948 | Zbl 0242.42006
[6] P. K.  Kamthan and M. Gupta: Sequence Spaces and Series. Marcel Dekker, New York, Basel, 1981. MR 0606740
[7] K. Knopp and G. G.  Lorentz: Beiträge zur absoluten Limitierung. Arch. Math. 2 (1949), 10–16. DOI 10.1007/BF02036747 | MR 0032790
[8] G.  Köthe: Topological Vector Spaces I. Springer-Verlag, New York, 1969. MR 0248498
[9] A. P.  Robertson and W. J.  Robertson: Topological Vector Spaces. University Press, Cambridge, 1964. MR 0162118
[10] A. K.  Snyder: An embedding property of sequence spaces related to Meyer-König and Zeller type theorems. Indiana Univ. Math. J. 35 (1986), 669–679. DOI 10.1512/iumj.1986.35.35035 | MR 0855180 | Zbl 0632.46007
[11] A. K.  Snyder and A.  Wilansky: Inclusion theorems and semiconservative $FK$-spaces. Rocky Mountain J.  Math. 2 (1972), 595–603. DOI 10.1216/RMJ-1972-2-4-595 | MR 0310496
[12] A.  Wilansky: Functional Analysis. Blaisdell Press, New York-Toronto-London, 1964. MR 0170186 | Zbl 0136.10603
[13] A.  Wilansky: Summability Through Functional Analysis. North Holland, Amsterdam-New York-Oxford, 1984. MR 0738632 | Zbl 0531.40008
[14] K.  Zeller: Allgemeine Eigenschaften von Limitierungsverfahren. Math. Z. 53 (1951), 463–487. DOI 10.1007/BF01175646 | MR 0039824 | Zbl 0045.33403
[15] K.  Zeller: Theorie der Limitierungsverfahren. Springer-Verlag, Berlin-Göttingen-Heidel-berg, 1958. MR 0118990 | Zbl 0085.04603
Partner of
EuDML logo