[1] P. Crawley and R. P. Dilworth: Algebraic Theory of Lattices. Prentice Hall, Englewood Cliffs, New Jersey, 1973.
[2] E. W. Kiss, L. Marki, P. Pröhle and W. Tholen:
Categorical algebraic properties. A compendium on amalgamation, congruence extension, epimorphisms, residual smallness and injectivity. Studia Sci. Math Hung. 18 (1983), 79–141.
MR 0759319
[3] B. Šešelja and G. Vojvodič:
A note on some lattice characterizations of Hamiltonian groups. Univ. u Novom Sadu, Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 19 (1989), 179–184.
MR 1100270
[4] B. Šešelja and G. Vojvodič:
CEP and homomorphic images of algebras. Univ. u Novom Sadu, Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 19 (1989), 75–80.
MR 1099995
[5] B. Šešelja and A. Tepavčevič:
Special elements of the lattice and lattice identities. Univ. u Novom Sadu, Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 20 (1990), 21–29.
MR 1158422
[6] B. Šešelja and A. Tepavčevič:
Weak congruences and homomorphisms. Univ. u Novom Sadu, Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 20 (1990), 61–69.
MR 1158426
[7] B. Šešelja and A. Tepavčevič:
On CEP and semimodularity in the lattice of weak congruences. Univ. u Novom Sadu, Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 22 (1992), 95–106.
MR 1295228
[8] G. Vojvodič and B. Šešelja:
Subalgebras and congruences via diagonal relation. In: Algebra and Logic, Proc. of Sarajevo Conf, 1987, pp. 169–177.
MR 1102051