[1] J. Diestel and J. J. Uhl:
Vector Measures. Survey No.15, Amer. Math. Soc., Providence, RI., 1977.
MR 0453964
[2] N. Dinculeanu:
Vector Measures. Pergamon Press, New York, 1967.
MR 0206190
[3] N. Dinculeanu and I. Kluvánek:
On vector measures. Proc. London Math. Soc. 17 (1967), 505–512.
MR 0214722
[4] I. Dobrakov and T. V. Panchapagesan:
A simple proof of the Borel extension theorem and weak compactness of operators. (to appear).
MR 1940050
[5] R. E. Edwards:
Functional Analysis, Theory and Applications. Holt, Rinehart and Winston, New York, 1965.
MR 0221256 |
Zbl 0182.16101
[8] I. Kluvánek:
Characterizations of Fourier-Stieltjes transform of vector and operator valued measures. Czechoslovak Math. J. 17 (1967), 261–277.
MR 0230872
[9] T. V. Panchapagesan:
On complex Radon measures I. Czechoslovak Math. J. 42 (1992), 599–612.
MR 1182191 |
Zbl 0795.28009
[10] T. V. Panchapagesan:
On complex Radon measures II. Czechoslovak Math. J. 43 (1993), 65–82.
MR 1205231 |
Zbl 0804.28007
[12] T. V. Panchapagesan:
Baire and $\sigma $-Borel characterizations of weakly compact sets in $M(T)$. Trans. Amer. Math. Soc. (1998), 4539–4547.
MR 1615946 |
Zbl 0946.28008
[13] T. V. Panchapagesan:
Characterizations of weakly compact operators on $C_0(T)$. Trans. Amer. Math. Soc. (1998), 4549–4567.
Zbl 0906.47021
[14] T. V. Panchapagesan:
On the limitations of the Grothendieck techniques. (to appear).
MR 1865743
[16] E. Thomas:
L’integration par rapport a une mesure de Radon vectoriele. Ann. Inst. Fourier (Grenoble) 20 (1970), 55–191.
DOI 10.5802/aif.352 |
MR 0463396