Previous |  Up |  Next

Article

Keywords:
module; inverse polynomial; homological dimensions; Hom; Ext; Tor
Summary:
In this paper we compute injective, projective and flat dimensions of inverse polynomial modules as $R[x]$-modules. We also generalize Hom and Ext functors of inverse polynomial modules to any submonoid but we show Tor functor of inverse polynomial modules can be generalized only for a symmetric submonoid.
References:
[1] F. S. Macaulay: The algebraic theory of modular system. Cambridge Tracts in Math. 19 (1916).
[2] H.  Matsumura: Commutative Algebra. W. A. Benjamin, Inc., New York, 1970. MR 0266911 | Zbl 0211.06501
[3] A. S.  McKerrow: On the injective dimension of modules of power series. Quart J.  Math. Oxford Ser. (2), 25 (1974), 359–368. DOI 10.1093/qmath/25.1.359 | MR 0371881 | Zbl 0302.16027
[4] D. G. Northcott: Injective envelopes and inverse polynomials. J. London Math. Soc. (2), 8 (1974), 290–296. MR 0360555 | Zbl 0284.13012
[5] S. Park: Inverse polynomials and injective covers. Comm. Algebra 21 (1993), 4599–4613. DOI 10.1080/00927879308824819 | MR 1242851 | Zbl 0794.16004
[6] S. Park: The Macaulay-Northcott functor. Arch. Math. (Basel) 63 (1994), 225–230. DOI 10.1007/BF01189824 | MR 1287251 | Zbl 0804.18009
[7] J. Rotman: An Introduction to Homological Algebra. Academic Press Inc., New York, 1979. MR 0538169 | Zbl 0441.18018
Partner of
EuDML logo