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Abstract. In this paper we compute injective, projective and flat dimensions of inverse
polynomial modules as R[x]-modules. We also generalize Hom and Ext functors of inverse
polynomial modules to any submonoid but we show Tor functor of inverse polynomial
modules can be generalized only for a symmetric submonoid.
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1. Introduction

Northcott in [4] considered the module K[x−1] of inverse polynomials over the
polynomial ring K[x] (with K a field). The idea for this module came from

Macaulay’s work in [1]. McKerrow elaborated on Norchcott’s work (in [3]) and
considered the moduleM [x−1] over R[x] (with R a ring andM a left R-module). An

easy modification of argument in Northcott [4] shows that ifR is a left noetherian ring
and E is an injective left R[x]-module, then E[x−1] is an injective left R[x]-module.

In [5] and [6] we considered the behaviors of these so-call Macaulay-Northcott mod-
ules when we apply the torsion and extension functors to them. In this paper we

will consider various homological dimensions of these modules. We also generalize
Hom, Ext and Tor functors of Macaulay-Northcott modules to any submonoid. An

interesting result is the fact that TorR[x
S]

i (M [x−S ], N [x−S ]) ∼= TorRi−1(M, N)[x−S ]
for a symmetric submonoid S of N (the set of natural numbers).
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Definition 1.1. Let R be a ring and M be a left R-module, then M [x−1] is a

left R[x]-module such that

x(m0 +m1x
−1 + . . .+mnx−n) = m1 +m2x

−1 + . . .+mnx−n+1

and such that

r(m0 +m1x
−1 + . . .+mnx−n) = rm0 + rm1x

−1 + . . .+ rmnx−n

where r ∈ R. We call M [x−1] a Macaulay-Northcott module.

Definition 1.2. Let C be the category of left R-module and D be the category
of left R[x]-module. Let f : RM → RN be a R-linear map, then T : C → D defined
by T (M) = M [x−1] and T (f) = f (where f(m0 + m1x

−1 + . . . + mnx−n+1) =

f(m0) + f(m1)x−1 + . . . + f(mn)x−1) is an additive and exact functor between C
and D. We call T the Macaulay-Northcott functor.

2. The general structure of inverse polynomial modules

Lemma 2.1. Let M be an essential extension of N as a left R-module, then

M [x−1] is an essential extension of N [x−1] as a left R[x]-module.

�����. Let m0 + m1x
−1 + . . . + mix

−i ∈ M [x−1] w.l.o.g. (without loss of

generality) let mi �= 0, then there is ri ∈ R, ri �= 0 such that miri ∈ N , miri �= 0.
So rix

i(m0+m1x
−1+ . . .+mix

−i) = rimi ∈ N [x−1]. Hence, M [x−1] is an essential

extension of N [x−1]. �

Remark 2.2. Let R be a left noetherian ring. If E is an injective envelope of M
then E[x−1] is an injective envelope of M [x−1].

Lemma 2.3. If 0 → M → E0 → E1 → . . . is a minimal injective resolution

of M as a left R-module then

0→ M [x−1]→ E0[x−1]→ E1[x−1]→ . . .

is a minimal injective resolution of M [x−1] as a left R[x]-module.

�����. This follows from the lemma above and from the exactness of the
Macaulay-Northcott functor. �

Definiton 2.4 ([7]). Let 0 → B
ε→ E0

d0→ E1 → . . . be an injective resolution;

denote im ε by L0 and, for n � 1, denote im dn−1 by Ln. For n � 0, Ln is the n−th
cosyzygy.
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We will need the following results.

Lemma 2.5 (Theorem 9.8, [7]). The followings are equivalent for a left R-module
N :

(1) id(N) � n;

(2) Extk(M, N) = 0 for all module M and all k � n+ 1;

(3) Extn+1(M, N) = 0 for all modules M ;

(4) every injective resolution of a left R-module N has an injective (n − 1)st
cosyzygy.

Theorem 2.6. Let R be a left Noetherian ring. Then

idR[x](M [x
−1]) = idR(M).

�����. Suppose idR(M) = n and

0→ M → E0 → E1 → . . . → En → 0

is an injective resolution of M . Then

0→ M [x−1]→ E0[x−1]→ E1[x−1]→ . . . → En[x−1]→ 0

is an injective resolution of M [x−1]. Let

Kn = ker(En−2 → En−1)

thenKn is an injective R-module butKi is not an injective R-module for i < n. Thus

Kn[x−1] is an injective R[x]-module and Ki[x−1] is not an injective R[x]-module for
i < n. Therefore, idR[x](M [x−1]) = n. Suppose idR(M) =∞ and

0→ M → E0 → E1 → . . . → En → . . .

is an injective resolution of M . Then

M [x−1]→ E0[x−1]→ E1[x−1]→ . . . → En[x−1]→ . . .

is an injective resolution of M [x−1]. Let

Kn = ker(En−2 → En−1)

then Ki is not an injective R-module for all i. Thus Ki[x−1] is not an injective R[x]-
module for all i. Therefore, idR[x](M [x−1]) =∞. Similarly if idR[x]M [x−1] = n, then

idR(M) = n and if idR[x]M [x−1] =∞, then idR(M) =∞. Hence, idR[x](M [x−1]) =
idR(M). �
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Lemma 2.7. There is a short exact sequence of R[x]-modules

0→ M [x]→ M [x, x−1]→ M [x−1]→ 0.

�����. Let M be a R-module, then M [x] ⊂ M [x, x−1] is a submodule. Let
ϕ : M [x,x−1]

M [x] → M [x−1] be defined by

ϕ
(
(a0 + a1x+ . . .+ anxn + b1x

−1 + . . .+ bmx−m) +M [x]
)

= b1 + b2x
−1 + . . .+ bmx−m+1.

Then ϕ is an isomorphism. Hence,

0→ M [x]→ M [x, x−1]→ M [x−1]→ 0

is a short exact sequence of R[x]-modules. �

Theorem 2.8. Let R be a left noetherian ring. Then

n � pdR[x](M [x
−1]) �n+ 1 if pdR(M) = n,

pdR[x](M [x
−1]) =∞ if pdR(M) =∞.

�����. Suppose pdR(M) = n then pdR[x](M [x]) = n. Consider the following
exact sequence

0→ M [x]→ M [x, x−1]→ M [x−1]→ 0.

Then we have the long exact sequence with Ext

0→ Hom(M [x−1], N)→ Hom(M [x, x−1], N)→ Hom(M [x], N)
→ Ext1(M [x−1], N)→ . . . → Extn+1(M [x−1], N)
→ Extn+1(M [x, x−1], N)→ Extn+1(M [x], N)
→ Extn+2(M [x−1], N)→ Extn+2(M [x, x−1], N)→ . . .

for a left R-module N . So Extn+1(M [x], N) = 0. Since pdR(S
−1M) � pdR(M) + 1

and M [x, x−1] ∼= S−1M [x], where S = {1, s, s2, . . .} for s ∈ R,

pdR[x](M [x, x−1]) � pdR[x](M [x]) + 1.

So Extn+2(M [x, x−1], N) = 0. Thus Extn+2(M [x−1], N) = 0. Therefore,

pdR[x](M [x
−1]) � n+ 1.
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Since Extn(M [x−1], N [x−1]) ∼= Extn(M, N)[[x]] (Theorem 1.2, [6]), and since

pdR(M) = n, Extn(M, N)[[x]] �= 0, Extn(M [x−1], N [x−1]) �= 0. Therefore,

pdR[x](M [x
−1]) � n.

Hence, we have
n � pdR[x](M [x

−1]) � n+ 1.

Suppose pdR(M) = ∞. Let n ∈ �
+ then Extn+1(M, N) �= 0 for some N . But

Extn+1(M [x−1], N [x−1]) ∼= Extn+1(M, N)[[x]]. Therefore,

Extn+1(M [x−1], N [x−1]) �= 0.

Hence, we have pdR[x](M [x
−1]) =∞. �

Theorem 2.9. Let R be a commutative and noetherian and M be a finitely

generated left R-module. Then

pdR[x](M [x
−1]) = n+ 1 if pdR(M) = n.

�����. Suppose pdR(M) = n then TorRn (M, N) �= 0 for some finitely generated
left R-module N by (II) p. 130 [2]. By Theorem 2.1 [6],

TorR[x]n+1(M [x
−1], N [x−1]) ∼= TorRn (M, N)[x−1].

So TorR[x]n+1(M [x
−1], N [x−1]) �= 0. Therefore, pdR[x](M [x

−1]) > n. Hence, by the

previous theorem we conclude that pdR[x](M [x
−1]) = n+ 1. �

Theorem 2.10. If fdR(M) = n then fdR[x](M [x−1]) = n+1 and if fdR(M) =∞
then fdR[x](M [x−1]) =∞.

�����. Suppose fdR(M) = n then fdR[x](M [x]) = n. Consider the following

exact sequence 0 → M [x] → M [x, x−1] → M [x−1] → 0. Then we have a long exact
sequence with Tor

. . . → Torn+2(N, M [x−1])→ Torn+1(N, M [x])

→ Torn+1(N, M [x, x−1])→ Torn+1(N, M [x−1])→ . . . → Tor1(N, M [x])

→ N ⊗M [x]→ N ⊗M [x, x−1]→ N ⊗M [x−1]→ 0.

Then Torn+1(N, M [x]) = 0. Since M [x, x−1] ∼= S−1M [x] where S = {1, s, s2, ...},
s ∈ R and

fdR[x](M [x, x−1]) � fdR[x](M [x]) + 1 = n+ 1,
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Torn+2(N, M [x, x−1]) = 0. Therefore, Torn+2(N, M [x−1]) = 0. Hence,

fdR[x](M [x
−1]) � n+ 1.

Since fdR(M) = n, Torn(N, M) �= 0 for some N . Since

Torn+1(N [x−1], M [x−1]) ∼= Torn(N, M)[x−1],

Torn+1(N [x−1], M [x−1]) �= 0. Thus fdR[x](M [x−1]) � n + 1. Therefore, we have
fdR[x](M [x−1]) = n+1. Suppose fdR(M) =∞. Let n ∈ �+ then Torn+1(N, M) �= 0
for some N . Since

Torn+1(N [x], M [x
−1]) ∼= Torn+1(N, M)[x−1],

Torn+1(N [x], M [x−1]) �= 0. Hence, we have fdR[x](M [x−1]) =∞. �

Let S ⊂ � (� the natural numbers) be a submonoid where we assume that for
some n0, all n � n0 are in �. If S is a symmetric, then it has a conductor c ∈ S,

i.e. c is such that the function n → −n+ c− 1 from � to �maps S bijectively to its
complement in �.

If S is a submonoid of N (N is the set of all natural numbers), then R[xS ] is
defined to be the ring of all sums

∑
i∈S

rix
i with ri ∈ R. If M is a left R-module, then

we let M [x−S ] consist of all
∑
i∈S

mix
−i. Then M [x−S ] is naturally an R[xS ]-module

(where xj · x−i = x−(i−j) if i− j ∈ S and xj · x−i = 0 if i− j /∈ S for i, j ∈ S).

Theorem 2.11. Let M be a left R-module and S be a symmetric submonoid of

N (the set of natural numbers). Then there is a short exact sequence

0→ M [xS ]→ M [x, x−1]→ M [x−S ]→ 0

as R[xS ]-modules.

�����. Let M be a R-module, then M [xS ] ⊂ M [x, x−1] is a submodule as

R[xS ]-modules. Let
∑
n∈�

anxn = . . .+ a−1x−1+ a0+ a1x
1+ a2x

2+ . . . for an element

of M [x, x−1]. Let ϕ : M [x, x−1]/M [xS ]→ M [x−S ] be defined by

ϕ

(∑

n∈�
anxn +M [xS ]

)
=

∑

n∈S

a−n+c−1x
−n

where c is the conductor of S. Then ϕ is an isomorphism. Hence,

0→ M [xS ]→ M [x, x−1]→ M [x−S ]→ 0

is a short exact sequence as R[xS ]-module. �
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We note that for a nonsymmetric submonid S, the above theorem does not hold.

Remark 2.12. We easily see that the natural isomorphism

HomR[x](M [x
−1], N [x−1] ∼= HomR(M, N)[[x]]

(Theorem 1.1, [6]) can be extended to the case

HomR[xS](M [x
−S ], N [x−S ] ∼= HomR(M, N)[[xS ]]

for any submonid S ⊂ N , and also for a left noetherian ring R the isomorphism

ExtiR[x](M [x
−1], N [x−1]) ∼= ExtiR(M, N)[[x]]

(Theorem 1.2, [6]) can be extended to the case

ExtiR[xS](M [x
−S ], N [x−S ]) ∼= ExtiR(M, N)[[xS ]]

for any submonid S ⊂ N . But by the above theorem 2.8, the isomorphism

TorR[x]i (M [x−1], N [x−1]) ∼= TorRi−1(M, N)[x−1]

(Theorem 2.1, [6]) can be extended to the case

TorR[x
S]

i (M [x−S ], N [x−S ]) ∼= TorRi−1(M, N)[x−S ]

only for a symmetric submonid S.
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