[1] P. Alegría:
Parametrization and Schur algorithm for the integral representation of Hankel forms in $\mathbb{T}^3$. Collect. Math. 43 (1992), 253–272.
MR 1252735
[2] J. Arazy, S. D. Fisher, J. Peetre:
Hankel operators on weighted Bergman spaces. Amer. J. Math. 110 (1988), 989–1053.
DOI 10.2307/2374685 |
MR 0970119
[3] S. Axler:
Bergman spaces and their operators. Surveys of Some Recent Results in Operator Theory, I, J. B. Conway, B. B. Morrel (eds.), Res. Notes Math. vol. 171, Pitman, Boston, London and Melbourne, 1988.
MR 0958569 |
Zbl 0681.47006
[5] J. Barría:
The commutative product $V^*_{1}V_{2}=V_{2}V_{1}^* $ for isometries $V_{1}$ and $V_{2}$. Indiana Univ. Math. J. 28 (1979), 581–586.
MR 0542945 |
Zbl 0428.47019
[6] E. L. Basor, I. Gohberg:
Toeplitz Operators and Related Topics. Operator Theory: Adv. Appl., vol. 71, Birkhäuser-Verlag, Basel, Berlin and Boston, 1994.
MR 1300205
[9] A. Böttcher, B. Silbermann:
Analysis of Toeplitz Operators. Springer-Verlag, Berlin, Heidelberg and New York, 1990.
MR 1071374
[10] A. Brown, P. R. Halmos:
Algebraic properties of Toeplitz operators. J. Reine Angew. Math. 213 (1963), 89–102.
MR 0160136
[11] J. B. Conway, J. Duncan, A. L. T. Paterson:
Monogenic inverse semigroups and their $C^*$-algebras. Proc. Roy. Soc. Edinburgh Sect. A 98 (1984), 13–24.
MR 0765485
[12] M. Cotlar, C. Sadosky:
Prolongements des formes de Hankel généralisées et formes de Toeplitz. C. R. Acad. Sci. Paris, Ser. I 305 (1987), 167–170.
MR 0903954
[16] A. Devinatz:
Toeplitz operators on $H^2$ spaces. Trans. Amer. Math. Soc. 112 (1964), 307–317.
MR 0163174
[18] R. G. Douglas:
On the operator equation $S^*XT=X$ and related topics. Acta Sci. Math. (Szeged) 30 (1969), 19–32.
MR 0250106 |
Zbl 0177.19204
[19] R. G. Douglas:
Banach Algebra Techniques in Operator Theory. Academic Press, New York, 1972.
MR 0361893 |
Zbl 0247.47001
[20] P. R. Halmos:
Introduction to Hilbert Space and the Theory of Spectral Multiplicity. Second edition, Chelsea, New York, 1957.
MR 1653399 |
Zbl 0079.12404
[21] P. R. Halmos:
A Hilbert Space Problem Book. Second edition, Springer-Verlag, Berlin, Heidelberg and New York, 1982.
MR 0675952 |
Zbl 0496.47001
[22] P. R. Halmos, L. J. Wallen:
Powers of partial isometries. J. Math. Mech. 19 (1969/1970), 657–663.
MR 0251574
[25] J. Janas, K. Rudol:
Toeplitz operators in infinitely many variables. Topics in Operator Theory, Operator Algebras and Applications (Timisoara, 1994), Rom. Acad., Bucharest, 1995, pp. 147–160.
MR 1421121
[26] C. H. Mancera, P. J. Paúl:
Compact and finite rank operators satisfying a Hankel type equation $T_2X=XT_1^*$. Integral Equations Operator Theory (to appear), .
MR 1829281
[27] C. H. Mancera, P. J. Paúl:
Properties of generalized Toeplitz operators. Integral Equations Operator Theory (to appear), .
MR 1829517
[28] C. H. Mancera, P. J. Paúl:
Remarks, examples and spectral properties of generalized Toeplitz operators. Acta Sci. Math. (Szeged) 66 (2000), 737–753.
MR 1804222
[32] N. K. Nikolskii:
Treatise on the Shift Operator. Springer-Verlag, Berlin, Heidelberg and New York, 1986.
MR 0827223
[34] V. V. Peller:
Vectorial Hankel operators, commutators and related operators of the Schatten-von Neumann class $\sigma _p$. Integral Equations Operator Theory 5 (1982), 244–272.
DOI 10.1007/BF01694041 |
MR 0647702
[35] S. C. Power:
Hankel Operators on Hilbert Space. Res. Notes Math., vol. 64, Pitman, Boston, London and Melbourne, 1982.
MR 0666699 |
Zbl 0489.47011
[36] V. Pták:
Factorization of Toeplitz and Hankel operators. Math. Bohem. 122 (1997), 131–145.
MR 1460943
[37] V. Pták, P. Vrbová:
Operators of Toeplitz and Hankel type. Acta Sci. Math. (Szeged) 52 (1988), 117–140.
MR 0957795
[39] M. Rosenblum:
Self-adjoint Toeplitz operators. Summer Institute of Spectral Theory and Statistical Mechanics 1965 (1966), Broohhaven National Laboratory, Upton, N. Y.
Zbl 0165.47703
[40] B. Sz.-Nagy, C. Foiaş:
Harmonic Analysis of Operators on Hilbert Space. Akadémiai Kiadó and North-Holland, Budapest and Amsterdam, 1970.
MR 0275190
[41] B. Sz.-Nagy, C. Foiaş:
An application of dilation theory to hyponormal operators. Acta Sci. Math. (Szeged) 37 (1975), 155–159.
MR 0383131
[42] B. Sz.-Nagy, C. Foiaş:
Toeplitz type operators and hyponormality. Dilation Theory, Toeplitz Operators and Other Topics, Operator Theory: Adv. Appl. vol. 11, Birkhäuser-Verlag, Basel, Berlin and Boston, 1983, pp. 371–378.
MR 0789650
[43] N. Young:
An Introduction to Hilbert Space. Cambridge University Press, Cambridge, 1988.
MR 0949693 |
Zbl 0645.46024
[46] K. Zhu:
Operator Theory in Function Spaces. Pure Appl, Math. vol. 139, Marcel Dekker, Basel and New York, 1990.
MR 1074007 |
Zbl 0706.47019