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Abstract. A construction is given which makes it possible to find all linear extensions of a
given ordered set and, conversely, to find all orderings on a given set with a prescribed linear
extension. Further, dense subsets of ordered sets are studied and a procedure is presented
which extends a linear extension constructed on a dense subset to the whole set.
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0. Introduction

In 1930, E. Szpilrajn published his famous theorem on the existence of a linear

extension of any ordered set [25]. Further development showed that this theorem was
one of the most significant results in the theory of ordered sets. We can mention that

the theory of order dimension, intensively studied recently (see, e.g., [3] or [6]), has its
background in Szpilrajn’s theorem. Many authors later presented other constructions

of a linear extension (e.g. [5], [8], [21]). Another problem is a characterization of those
ordered sets which have a linear extension with a given property. So, it is well known

that a well founded ordered set has a linear extension which is a well ordering [11],
[16]. M. Pouzet and I. Rival characterized ordered sets having a complete linear

extension [17]. A. Rutkowski gave some sufficient conditions for an ordered set to
have a linear extension which is isomorphic to the set of rational numbers [18]. A

good survey on these problems is given in [16].

In [12] a construction is presented which provides a well ordered extension of any
well founded ordered set, and any well ordered extension can be constructed in such
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a way. In this paper the same problem is solved for any linear extension. More

exactly, a construction is given, which makes it possible

(1) for a given ordered set, to find all its linear extensions, and

(2) for a given linearly ordered set, to find all orderings on its carrier having a

linear extension identical with the given linear ordering.

Our construction is, however, limited to finding a linear ordering on the carrier
with a certain special property and we have not a complete description of all linear

orderings with this property (see Problem 1.6.). Nevertheless, we hope that this
construction offers a possibility of looking into the structure of all linear extensions.

In Sections 2. and 3. we show that it suffices to construct a linear extension of a

dense subset of a given ordered set. The concept of a dense subset was introduced by
F. Hausdorff for linearly ordered sets [4]; see also D. Kurepa [7], W. Sierpiński [22] etc.

A generalization to ordered sets can be found in J. Schmidt [20]; other generalizations
are presented in [13], [14], [15]. In this paper we define a dense subset of an ordered

set in such a way that it has the Hausdorff property in subsets that are linearly
ordered. Furthermore, we present a construction that offers a possibility to extend

a linear extension defined on a dense subset to the whole set. This construction is
universal in the sense that any linear extension can be found in this way.

The fundamental notions used here can be found in [1] or [24]. By a homomorphism

of an ordered set into another one we mean an isotone mapping. If f is a bijection,
then f−1 denotes its inverse. If f, g are binary relations, then g◦f is their composite,

i.e. (x, y) ∈ g ◦ f means the existence of an element z such that (x, z) ∈ f , (z, y) ∈ g.
If S is a set, then |S| denotes its cardinality. For an equivalence relation e on a set S

we denote by S/e the corresponding decomposition of S; elements of S/e are called
blocks.

Both authors wish to express their gratitude to Professor Josef Novák; his results
on linearly ordered continua (e.g. [10]) inspired them to study ordered sets.

1. Linear extensions

Let S be a set. A function on S whose values are only 0 and 1 will be called a

01-function. Let F be a set of 01-functions on S. We define a binary relation N on
F in the following way: For any f, g ∈ F we put (f, g) ∈ N if f(t) � g(t) for any

t ∈ S. It is easy to see that N is an ordering relation on F ; it will be referred to as
the natural ordering on F .

854



Let (S, R) be an ordered set. We define a 01-function f [x] on S for any x ∈ S as

follows:

f [x](t) =

{
0 if (x, t) ∈ R,

1 if (x, t) /∈ R,

and put F = {f [x] ; x ∈ S}.
The following simple assertion is known and its proof is trivial.

1.1. Lemma. The mapping f : S → F is an isomorphism of (S, R) onto (F, N).

Let (S, R) be an ordered set, F the set of 01-functions f [x] on S constructed above

for any x ∈ S and N the natural ordering on F . Then (F, N) will be said to be the
natural representative of (S, R) and f will be referred to as the natural representation

of (S, R). Clearly, R = f−1 ◦N ◦ f .

If (S, R) is an ordered set and M an ordering relation on S such that R ⊆ M ,

then M is said to be an extension of R. If, moreover, M is a linear ordering on S

then it is called a linear extension of R.

Let (S, L) be a linearly ordered set, F a set of 01-functions on S. For f, g ∈ F

put (f, g) ∈ A(L) if either f = g or there exists s ∈ S such that f(s) < g(s) and
f(t) � g(t) for any t ∈ S with (t, s) ∈ L. Then A(L) is an ordering relation on F

(see [19]; the relation A(L) is denoted by WR2 there); it will be referred to as the
alphabetical ordering on F with respect to L. Trivially, A(L) is an extension of the

natural ordering N on F .

1.2. Lemma. Let (S, R) be an ordered set, (F, N) its natural representative, f
its natural representation. If L is an arbitrary linear ordering on S, then f−1◦A(L)◦f
is an extension of R.

�����. As A(L) is an extension of N , f−1 ◦ A(L) ◦ f is an extension of
f−1 ◦N ◦ f = R. �

1.3. Theorem. Let (S, R) be an ordered set, (F, N) its natural representative, f
its natural representation. If L is a linear ordering on S, then the following conditions

are equivalent:

(i) L is a linear extension of R;

(ii) L = f−1 ◦A(L) ◦ f ;

(iii) there exists a linear ordering M on S such that L = f−1 ◦A(M) ◦ f .

�����. 1. Let (i) hold. We prove that f is a homomorphism of (S, L) onto

(F, A(L)). Suppose x, y ∈ S, (x, y) ∈ L. If x = y then f [x] = f [y]; thus let
x �= y. As L is an extension of R, (y, x) ∈ R is impossible. Hence (y, x) /∈ R which
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entails f [y](x) = 1. Further, by definition, f [x](x) = 0. If there exists t ∈ S with

(t, x) ∈ L and f [y](t) = 0, then (y, t) ∈ R. It follows that (y, t) ∈ L and thus
(y, x) ∈ L. This contradicts the assumption (x, y) ∈ L, x �= y. Thus f [y](t) = 1
for any t ∈ S with (t, x) ∈ L, which implies f [x](t) � f [y](t) for any such t and,

therefore, (f [x], f [y]) ∈ A(L). Thus, f is a bijective homomorphism of the linearly
ordered set (S, L) onto the ordered set (F, A(L)). Hence A(L) is a linear ordering

on F , f is an isomorphism and consequently L = f−1 ◦A(L) ◦ f . Thus (ii) holds.

2. Condition (ii) implies (iii) trivially.

3. Let (iii) hold. By 1.2., f−1 ◦ A(M) ◦ f = L is an extension of R, thus a linear

extension, and (i) holds. �

1.4. Lemma. Let (S, R) be an ordered set, (F, N) its natural representative, f

its natural representation. If L is a well ordering on S then f−1 ◦A(L) ◦ f is a linear

extension of R.

�����. f−1 ◦A(L) ◦ f is an extension of R by 1.2. As A(L) is trivially a linear

ordering on F , f−1 ◦A(L) ◦ f is a linear ordering on S. �

1.5. Corollary. Let (S, L) be a linearly ordered set. Let |S| = ℵν where ν is an

ordinal. Then (S, L) is isomorphic to a set of sequences of numbers 0 and 1 of type

ων where the sequences are ordered alphabetically ([23], [14], [9]).

�����. Let (F, N) be the natural representative of (S, L), f its natural repre-
sentation. Choose any well ordering M on S. By 1.4., f−1 ◦ A(M) ◦ f is a linear

extension of L. As L is linear, we have L = f−1 ◦A(M) ◦ f and f is an isomorphism
of (S, L) onto (F, A(M)); the elements of F may be regarded as sequences of type

ων . �

Let (S, R) be an ordered set, (F, N) its natural representative, f its natural rep-
resentation. Denote by E(R) the set of all linear orderings M on S such that A(M)

is a linear ordering on F (and so, f−1 ◦ A(M) ◦ f is a linear extension of R). Any
well ordering on S is an element of E(R) by 1.4. Also, by 1.3, R ∈ E(R) if R is a

linear ordering.

1.6. Problem. Characterize the set E(R).

1.7. Construction of all linear extensions of a given ordering relation.
Let an ordered set (S, R) be given. Construct the natural representative (F, N) and
the natural representation f of (S, R). Choose an arbitrary element M of E(R).

Then f−1 ◦ A(M) ◦ f is a linear extension of R. Any linear extension of R can be

constructed in this way.
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�����. f−1 ◦ A(M) ◦ f is an extension of R by 1.2. As A(M) is linear,

f−1 ◦ A(M) ◦ f is linear, too. On the other hand, if L is a linear extension of R,
then, by 1.3, L ∈ E(R) and L = f−1 ◦A(L) ◦ f . �

1.8. Example. Let (S, R) be an ordered set and x, y ∈ S elements such that
(x, y) /∈ R, (y, x) /∈ R. Let (F, N) be the natural representative of (S, R), f its

natural representation. We have f [x](x) = 0, f [y](x) = 1. Choose any well ordering
M on S such that x is the least element in (S, M). Then (f [x], f [y]) ∈ A(M). By

1.4, M ∈ E(R); if we put L = f−1 ◦ A(M) ◦ f then L is a linear extension of R

and (x, y) ∈ L. Thus, for any ordered set (S, R) and any elements x, y ∈ S which

are incomparable with respect to R there exists a linear extension L of R such that
(x, y) ∈ L ([25]).

1.9. Construction of all ordering relations with a given linear extension.
Let (S, L) be a linearly ordered set. Choose a set F of 01-functions on S and

a linear ordering M on S such that (S, L) is isomorphic to (F, A(M)); let f be

the corresponding isomorphism. Construct the natural ordering N on F . Then

(S, f−1 ◦ N ◦ f) is an ordered set such that L is a linear extension of f−1 ◦ N ◦ f .

Any ordered set (S, R) such that L is a linear extension of R can be constructed in

this way.

�����. If F, M and f have the desired property, then L = f−1 ◦ A(M) ◦ f .
As A(M) is an extension of N , f−1 ◦ A(M) ◦ f = L is an extension of f−1 ◦N ◦ f .

On the other hand, if (S, R) is an ordered set such that L is a linear extension
of R, (F, N) the natural representative of (S, R), f its natural representation, then

R = f−1 ◦N ◦ f and L = f−1 ◦A(L)◦ f by 1.3, so that f is an isomorphism of (S, L)
onto (F, A(L)). �

1.10. Example. Let Q1 be the set of all rational numbers greater than 0 and less
than 1, let L be the usual linear ordering on Q1. For any q ∈ Q1 there exist uniquely
determined positive integers m, n such that m < n, q = m

n and the greatest common

divisor of m, n equals 1. We put n = I(q). Let us define a binary relation M on Q1
as follows: For q, r ∈ Q1 we put (q, r) ∈ M if either I(q) < I(r) or I(q) = I(r) and

(q, r) ∈ L. It is easy to see that M is a linear ordering on Q1. We now assign a 01-
function on Q1 to any q ∈ Q1. For any q ∈ Q1 put K(q) = {r ∈ Q1 ; I(r) � I(q)},
O(q) = {r ∈ K(q) ; (q, r) ∈ L} and

f [q](r) =

{
0 if r ∈ O(q),

1 if either r ∈ K(q)−O(q) or r ∈ Q1 −K(q).

Let F = {f [q] ; q ∈ Q1} and let N be the natural ordering on F . We show that
f is an isomorphism of (Q1, L) onto (F, A(M)). By definition, f : Q1 → F is a
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surjection. Let us have q, r ∈ Q1, q �= r, (q, r) ∈ L. Put p = min{I(q), I(r)},
J(p) = {t ∈ Q1 ; I(t) � p}. It is easy to see that J(p) is an initial interval in
(Q1, M). By definition, O(q) ∩ J(p) and O(r) ∩ J(p) are final intervals in J(p) with
respect to L. Since (q, r) ∈ L, we obtain O(r) ∩ J(p) ⊆ O(q) ∩ J(p). It follows that

f [r](t) = 0 implies f [q](t) = 0 for any t ∈ J(p), thus

(∗) f [q](t) � f [r](t) for any t ∈ J(p).

Two cases are now possible.

(1) p = I(q) � I(r). As q ∈ O(q), we have f [q](q) = 0. Since (q, r) ∈ L, q �= r,
we obtain q /∈ O(r) and hence f [r](q) = 1. Thus, q ∈ J(p) and f [q](q) < f [r](q).

Regarding (∗), we obtain (f [q], f [r]) ∈ A(M), f [q] �= f [r].

(2) p = I(r) < I(q). If t ∈ K(q)−K(r), then f [r](t) = 1, which implies f [q](t) �
f [r](t) for any t ∈ K(q) by virtue of (∗). By definition, we have f [q](q) = 0,
f [r](q) = 1; thus (f [q], f [r]) ∈ A(M), f [q] �= f [r].

We have proved that f is a homomorphism of (Q1, L) onto (F, A(M)) which is a
bijection. Thus, (F, A(M)) is linearly ordered and f is an isomorphism.

By 1.9, (Q1, f−1 ◦ N ◦ f) is an ordered set such that L is a linear extension of
f−1◦N ◦f . Note that f−1◦N ◦f is not a linear ordering. E.g., we have f

[
1
3

] (
1
3

)
= 0,

f
[
1
3

] (
3
4

)
= 1, f

[
3
4

] (
1
3

)
= 1, f

[
3
4

] (
3
4

)
= 0, which implies that f

[
1
3

]
, f

[
3
4

]
are

incomparable with respect to N and thus 13 ,
3
4 are incomparable with respect to

f−1 ◦N ◦ f .

2. Dense subsets

Let (S, R) be an ordered set, H ⊆ S. The set H will be called dense in (S, R) if
for any s1, s2 ∈ S such that s1 �= s2 and (s1, s2) ∈ R there exist elements h1, h2 ∈ H

with the properties h1 �= h2, (s1, h1) ∈ R, (h1, h2) ∈ R, (h2, s2) ∈ R.

2.1. Examples. (i) If (S, R) is an antichain, i.e. R = idS , then ∅ is dense in
(S, R).

(ii) If (S, R) is a linearly ordered set and H ⊆ S, then H is dense in (S, R) in

the sense of the above formulated definition if and only if it is dense in (S, R) in the
sense of Hausdorff ([4], p. 89).

(iii) If (S, R) is a finite connected ordered set, |S| � 2, then the only set that is
dense in (S, R) is equal to S.

The last example may create the impression that the use of dense subsets in
constructions has only a very limited impact. But there are some cases where the
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use of dense subsets is advantageous. To this aim, we mention the definition of a

lexicographic sum of ordered sets [2].
Let (P, T ) be an ordered set and let (Sp, Rp) be an ordered set for any p ∈ P . The

lexicographic sum
∑

p∈(P,T )
(Sp, Rp) is the set of all pairs (p, s) where p ∈ P , s ∈ Sp,

together with the binary relation R such that ((p1, s1), (p2, s2)) ∈ R if either p1 �= p2,

(p1, p2) ∈ T or p1 = p2 = p and (s1, s2) ∈ Rp. It is well known that
∑

p∈(P,T )
(Sp, Rp)

is an ordered set [2]. If (P, T ) is an antichain, i.e. T = idP , we obtain the cardinal

(direct) sum which will be denoted by
∑

p∈P

(Sp, Rp).

2.2. Lemma. Let P be a set, (Sp, Rp) an ordered set for any p ∈ P . Let Hp

be a dense subset of (Sp, Rp) for any p ∈ P . Then
⋃

p∈P

({p} × Hp) is dense in the

cardinal sum
∑

p∈P

(Sp, Rp).

�����. Put
∑

p∈P

(Sp, Rp) = (S, R). If (p1, s1, ), (p2, s2) ∈ S, (p1, s1) �= (p2, s2)

and ((p1, s1), (p2, s2)) ∈ R, then p1 = p2 = p and (s1, s2) ∈ Rp. Thus s1 �= s2
and hence there exist elements h1, h2 ∈ Hp such that h1 �= h2, (s1, h1) ∈ Rp,

(h1, h2) ∈ Rp, (h2, s2) ∈ Rp. Then ((p, s1), (p, h1)) ∈ R, ((p, h1), (p, h2)) ∈ R,
((p, h2), (p, s2)) ∈ R and (p, h1), (p, h2) ∈

⋃
p∈P

({p} ×Hp). �

Let (S, R) be an ordered set, H ⊆ S. The set H will be called strongly dense in
(S, R) if it is dense in (S, R) and if it contains all maximal and all minimal elements

in (S, R).

2.3. Theorem. Let (P, T ) be an ordered set, let (Sp, Rp) be an ordered set for
any p ∈ P . Let Hp be a strongly dense subset of (Sp, Rp) for any p ∈ P . Then⋃
p∈P

({p} ×Hp) is dense in the lexicographic sum
∑

p∈(P,T )
(Sp, Rp).

�����. Put
∑

p∈(P,T )
(Sp, Rp) = (S, R). Let (p1, s1), (p2, s2) ∈ S, (p1, s1) �=

(p2, s2) and ((p1, s1), (p2, s2)) ∈ R. Then either p1 �= p2, (p1, p2) ∈ T or p1 = p2 = p

and (s1, s2) ∈ Rp.
Consider the first case. If s1 is maximal in (Sp1 , Rp1) then s1 ∈ Hp1 . In the

opposite case there exists q1 ∈ Sp1 such that s1 �= q1, (s1, q1) ∈ Rp1 . Then there
exist h1, h2 ∈ Hp1 such that h1 �= h2, (s1, h1) ∈ Rp1 , (h1, h2) ∈ Rp1 , (h2, q1) ∈ Rp1 .

In both cases there exists h1 ∈ Hp1 such that (s1, h1) ∈ Rp1 . Similarly, either
s2 is minimal in (Sp2 , Rp2) or not; in both cases there exists h2 ∈ Hp2 such that

(h2, s2) ∈ Rp2 . Then (p1, h1), (p2, h2) ∈
⋃

p∈P

({p} × Hp), (p1, h1) �= (p2, h2) and

((p1, s1), (p1, h1)) ∈ R, ((p1, h1), (p2, h2)) ∈ R, ((p2, h2), (p2, s2)) ∈ R.
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If p1 = p2 = p and (s1, s2) ∈ Rp, then s1 �= s2 and thus there exist h1, h2 ∈ Hp such

that h1 �= h2 and (s1, h1) ∈ Rp, (h1, h2) ∈ Rp, (h2, s2) ∈ Rp. Then (p, h1), (p, h2) ∈⋃
p∈P

({p} × Hp), (p, h1) �= (p, h2) and ((p, s1), (p, h1)) ∈ R, ((p, h1), (p, h2)) ∈ R,

((p, h2), (p, s2)) ∈ R. �

2.4. Example. Let (P, T ) be an ordered set. For any p ∈ P put (Sp, Rp) = (R, �)
whereR is the set of all real numbers and � is the usual ordering onR. Furthermore,
set Hp = Q for any p ∈ P where Q is the set of all rational numbers. As Q is
strongly dense in (R, �), the set

⋃
p∈P

({p} × Q) is dense in the lexicographic sum
∑

p∈(P,T )
(Sp, Rp); the last set is uncountable while the set

⋃
p∈P

({p} ×Q) is countable

for a denumerable set P .
Put, e.g., P = {1, 2, 3} and T = {(1, 1), (2, 1), (2, 2), (2, 3), (3, 3)}, i.e. (P, T ) has

the following Hasse diagram:

1 3

2
�

Then
∑

p∈(P,T )
(Sp, Rp) = (S, R) is an ordered set where S =

3⋃
i=1
({i} × R) and R is

such that ((2, r), (k, t)) ∈ R for any r, t ∈ R and k ∈ {1, 3}, ((i, r), (i, t)) ∈ R for any

i ∈ {1, 2, 3} and r, t ∈ R, r � t while (1, r), (3, t) are incomparable with respect to R

for any r, t ∈ R. The set H =
3⋃

i=1
({i} ×Q) is dense in (S, R); this set is countable.

3. Linear extensions and dense subsets

Let (S, R) be an ordered set, H its dense subset. Let L be a linear extension of

the ordering R ∩ (H × H) on H . Denote by I(H, L) the set of all initial intervals
(ideals) in (H, L); this set is ordered by the set inclusion.

Let s ∈ S be an element, i ∈ I(H, L) an initial interval in (H, L). The interval i
will be called corresponding to s if it has the following properties:

(α) If h ∈ H and there exists g ∈ H such that (h, g) ∈ L, (g, s) ∈ R, then h ∈ i.
(β) If h ∈ H , h �= s and there exists g ∈ H such that (s, g) ∈ R, (g, h) ∈ L, then

h /∈ i.

3.1. Lemma. If s ∈ H , then the principal ideal {h ∈ H ; (h, s) ∈ L} is the only
interval in I(H, L) corresponding to s.
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�����. Put i(s) = {h ∈ H ; (h, s) ∈ L}. If h ∈ H and there exists g ∈ H such

that (h, g) ∈ L, (g, s) ∈ R, then (g, s) ∈ L, thus (h, s) ∈ L and h ∈ i(s). Therefore,
i(s) has property (α). If h ∈ H , h �= s and there exists g ∈ H such that (s, g) ∈ R,
(g, h) ∈ L, then (s, h) ∈ L, s �= h, which implies (h, s) /∈ L and h /∈ i(s). It follows

that i(s) has property (β), too, and hence i(s) is corresponding to s. Let i ∈ I(H, L)
be an arbitrary interval corresponding to s. If h ∈ i(s), then (h, s) ∈ L, (s, s) ∈ R,

which implies h ∈ i by (α). Thus, i(s) ⊆ i. If h ∈ H , h /∈ i(s), then (h, s) /∈ L and
consequently (s, h) ∈ L, s �= h. Since (s, s) ∈ R, we obtain h /∈ i by (β). Hence

i = i(s) and thus i(s) is the only interval in I(H, L) corresponding to s. �

In the sequel we assume that for any s ∈ S an interval i(s) ∈ I(H, L) is given
which is corresponding to s. In other words, a mapping i : S → I(H, L) is given such

that i(s) is corresponding to s for any s ∈ S.

3.2. Lemma. If s1, s2 ∈ S, s1 �= s2 and i(s1) = i(s2), then (s1, s2) /∈ R.

�����. Suppose s1 �= s2, i(s1) = i(s2) and (s1, s2) ∈ R. As H is dense

in (S, R), there exist h1, h2 ∈ H such that h1 �= h2, (s1, h1) ∈ R, (h1, h2) ∈ R,
(h2, s2) ∈ R. Note that h2 �= s1; otherwise (h2, h1) ∈ R would hold, thus h1 = h2,

a contradiction. Since (h2, h2) ∈ L, we obtain h2 ∈ i(s2) by (α), and h2 /∈ i(s1) by
(β). This contradicts the hypothesis i(s1) = i(s2). �

It follows from 3.2 that the conditions s1, s2 ∈ S, s1 �= s2, i(s1) = i(s2) imply

that s1, s2 are incomparable elements in (S, R). In other words, any block of the
decomposition S/i−1◦i is an antichain with respect to R.

3.3. Construction. Let (S, R) be an ordered set, H a subset of S which is dense
in (S, R), L a linear extension of the ordering R∩(H×H) on H and i : S → I(H, L)

a mapping such that i(s) is a corresponding interval to s for any s ∈ S.

To any block B ∈ S/i−1◦i, assign an arbitrary linear ordering EB on B.

For any s1, s2 ∈ S put (s1, s2) ∈ E if and only if one of the following cases occurs:

(a) i(s1) ⊆ i(s2) and i(s1) �= i(s2);

(b) i(s1) = i(s2) and (s1, s2) ∈ EB where B ∈ S/i−1◦i and s1, s2 ∈ B.

Then E is a linear ordering on S that is a linear extension of R.

Any linear extension of R may be obtained in this way by choosing L, i and EB

appropriately for any B ∈ S/i−1◦i.

The last two assertions must be proved.

3.4. Theorem. E is a linear ordering on S that is a linear extension of R.
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�����. Let s1, s2 ∈ S. As the set of all initial intervals in the linearly ordered

set (H, L) is linearly ordered by the set inclusion, either i(s1) ⊆ i(s2) or i(s2) ⊆ i(s1)
holds; suppose i(s1) ⊆ i(s2). If i(s1) �= i(s2), we have (s1, s2) ∈ E; if i(s1) = i(s2)
and B ∈ S/i−1◦i is such that s1, s2 ∈ B, then (s1, s2) ∈ EB or (s2, s1) ∈ EB, thus

(s1, s2) ∈ E or (s2, s1) ∈ E. It follows that E is a linear ordering on S.
Suppose s1, s2 ∈ S, (s1, s2) ∈ R and s1 �= s2. Then i(s1) �= i(s2) by 3.2 and

there exist elements h1, h2 ∈ H such that h1 �= h2 and (s1, h1) ∈ R, (h1, h2) ∈ R,
(h2, s2) ∈ R. Then necessarily h2 �= s1 so that h2 /∈ i(s1) by (β), and (h2, h2) ∈ L

implies h2 ∈ i(s2) by (α). Thus i(s2) ⊆ i(s1) is impossible, so that i(s1) ⊆ i(s2) and
(s1, s2) ∈ E. We have proved that E is an extension of R. �

3.5. Theorem. Let (S, R) be an ordered set, H a subset of S which is dense

in (S, R). Then any linear extension of R may be obtained by the construction

described in 3.3 by a suitable choice of L, i and EB for any B ∈ S/i−1◦i.

�����. Let E′ be a linear extension of R onto S. Put L = E′ ∩ (H × H)
and i(s) = {h ∈ H ; (h, s) ∈ E′} for any s ∈ S. Then L is a linear extension of

R∩(H×H) and i(s) is an initial interval in (H, L) for any s ∈ S. We prove that i(s)
is corresponding to s. If h ∈ H and there exists g ∈ H such that (h, g) ∈ L, (g, s) ∈ R,

then (h, g) ∈ E′, (g, s) ∈ E′ and, therefore, (h, s) ∈ E′, which implies h ∈ i(s). Thus,
i(s) has property (α). If h ∈ H , h �= s and there exists g ∈ H such that (s, g) ∈ R,
(g, h) ∈ L, then (s, g) ∈ E′, (g, h) ∈ E′, and therefore (s, h) ∈ E′. Thus (h, s) /∈ E′

and h /∈ i(s); hence i(s) has property (β). Now put EB = E′ ∩ (B × B) for any
B ∈ S/i−1◦i and let E be the linear extension of R obtained by Construction 3.3,

where L, i and EB for any B ∈ S/i−1◦i have been defined above. Let s1, s2 ∈ S,
(s1, s2) ∈ E. If i(s1) = i(s2) and B ∈ S/i−1◦i is such that s1, s2 ∈ B, then (s1, s2) ∈
EB = E′ ∩ (B ×B), thus (s1, s2) ∈ E′. If i(s1) �= i(s2), then i(s1) ⊆ i(s2) and there
exists h ∈ H such that h ∈ i(s2)− i(s1). By definition of i, this means (h, s2) ∈ E′,

(h, s1) /∈ E′, which entails (s1, h) ∈ E′. Thus (s1, s2) ∈ E′ holds. We have proved
E ⊆ E′; since both orderings E, E′ are linear, E = E′ holds, which completes the

proof of the theorem. �

3.6. Example. Let (S, R) be the ordered set from Example 2.4, i.e. S =
3⋃

i=1
({i} ×R) and R is such that ((2, r), (k, t)) ∈ R for any r, t ∈ R and k ∈ {1, 3},

((i, r), (i, t)) ∈ R for any i ∈ {1, 2, 3} and r, t ∈ R, r � t and (1, r), (3, t) are in-

comparable with respect to R for any r, t ∈ R. The set H =
3⋃

i=1
({i} ×Q) is dense

in (S, R). Let L be the following linear ordering on H : ((2, p), (k, q)) ∈ L for any

p, q ∈ Q and k ∈ {1, 3}, ((k, p), (j, q)) ∈ L if k ∈ {1, 3}, j ∈ {1, 3}, p ∈ Q, q ∈ Q,
p < q, ((1, q), (3, q)) ∈ L for any q ∈ Q and ((i, q), (i, q)) ∈ L for any i ∈ {1, 2, 3},
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q ∈ Q. It is easy to see that L is in fact a linear ordering on H which is an extension

of R ∩ (H ×H).

Let us choose the following mapping i : S → I(H, L).

i((2, r)) = {(2, q) ; q ∈ Q, q � r},
i((1, r)) = {(2, q) ; q ∈ Q} ∪ {(1, q) ; q ∈ Q, q � r} ∪ {(3, q) ; q ∈ Q, q < r},
i((3, r)) = {(2, q) ; q ∈ Q} ∪ {(1, q) ; q ∈ Q, q � r} ∪ {(3, q) ; q ∈ Q, q � r}

for any r ∈ R.
It is not difficult to prove that i((k, r)) is a corresponding interval to (k, r) for any

k ∈ {1, 2, 3}, r ∈ R.
If i((k, r)) = i((j, s)), then r = s ∈ R − Q and k, j ∈ {1, 3}, i.e. any block

B ∈ S/i−1◦i with |B| � 2 is of the form B = {(1, r), (3, r)} where r ∈ R−Q. Let us
choose EB = {((1, r), (3, r)), (1, r), (1, r)), ((3, r), (3, r))} for any such B. Then the
linear extension E of R obtained by Construction 3.3 by choosing L, i and EB for

B ∈ S/i−1◦i as above is described as follows:

E = {((2, r), (j, t)) ; j ∈ {1, 3}, r ∈ R, t ∈ R}
∪ {((k, r), (j, t)) ; k, j ∈ {1, 3}, r ∈ R, t ∈ R, r < t}
∪ {((i, r), (i, t)) ; i ∈ {1, 2, 3}, r ∈ R, t ∈ R, r � t}
∪ {((1, r), (3, r)) ; r ∈ R}.
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[9] E. Mendelson: Appendix. W. Sierpiński: Cardinal and Ordinal Numbers. Warszawa,
1958.

[10] J. Novák: On partition of an ordered continuum. Fund. Math. 39 (1952), 53–64.
[11] V. Novák: On the well dimension of ordered sets. Czechoslovak Math. J. 19 (94) (1969),

1–16.

863



[12] V. Novák: Über Erweiterungen geordneter Mengen. Arch. Math. (Brno) 9 (1973),
141–146.

[13] V. Novák: Some cardinal characteristics of ordered sets. Czechoslovak Math. J. 48 (123)
(1998), 135–144.

[14] M. Novotný: O representaci částečně uspořádaných množin posloupnostmi nul a jedniček
(On representation of partially ordered sets by means of sequences of 0’s and 1’s). Čas.
pěst. mat. 78 (1953), 61–64.

[15] M. Novotný: Bemerkung über die Darstellung teilweise geordneter Mengen. Spisy přír.
fak. MU Brno 369 (1955), 451–458.

[16] Ordered sets. Proc. NATO Adv. Study Inst. Banff (1981)(I. Rival, ed.).
[17] M. Pouzet, I. Rival: Which ordered sets have a complete linear extension?. Canad. J.

Math. 33 (1981), 1245–1254.
[18] A. Rutkowski: Which countable ordered sets have a dense linear extension?. Math.

Slovaca 46 (1996), 445–455.
[19] J. Schmidt: Lexikographische Operationen. Z. Math. Logik Grundlagen Math. 1 (1955),

127–170.
[20] J. Schmidt: Zur Kennzeichnung der Dedekind-Mac Neilleschen Hülle einer geordneten

Menge. Arch. Math. 7 (1956), 241–249.
[21] V. Sedmak: Dimenzija djelomično uredenih skupova pridruženih poligonima i poliedrima

(Dimension of partially ordered sets connected with polygons and polyhedra). Period.
Math.-Phys. Astron. 7 (1952), 169–182.
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