Previous |  Up |  Next

Article

Title: On copies of $c_0$ in the bounded linear operator space (English)
Author: Ferrando, J. C.
Author: Amigó, J. M.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 50
Issue: 3
Year: 2000
Pages: 651-656
Summary lang: English
.
Category: math
.
Summary: In this note we study some properties concerning certain copies of the classic Banach space $c_{0}$ in the Banach space $\mathcal{L}\left( X,Y\right) $ of all bounded linear operators between a normed space $X$ and a Banach space $Y$ equipped with the norm of the uniform convergence of operators. (English)
Keyword: Banach space basic sequence copy of $c_{0}$ copy of $\ell _{\infty }$
Keyword: basic sequence
Keyword: copy of $c_{0}$
Keyword: copy of $\ell _{\infty }$
MSC: 46B03
MSC: 46B25
MSC: 46B28
MSC: 46E40
idZBL: Zbl 1079.46512
idMR: MR1777485
.
Date available: 2009-09-24T10:36:41Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127600
.
Reference: [BDL] J. Bonet, P. Domaǹski, Å. Lindström: Cotype and complemented copies of $c_{0}$ in spaces of operators.Czechoslovak Math. J. 46 (1996), 271–289. MR 1388616
Reference: [BP] C. Bessaga, A. Pełczyński: On bases and unconditional convergence of series in Banach spaces.Studia Math. 17 (1958), 151–164. MR 0115069, 10.4064/sm-17-2-151-164
Reference: [Di] J. Diestel: Sequences and Series in Banach Spaces.Springer-Verlag, New York Berlin Heidelberg Tokyo, 1984. MR 0737004
Reference: [Dr1] L. Drewnowski: Copies of $\ell _{\infty }$ in an operator space.Math. Proc. Cambridge Philos. Soc. 108 (1990), 523–526. MR 1068453, 10.1017/S0305004100069401
Reference: [Dr2] L. Drewnowski: When does $ca\left( \Sigma ,X\right) $ contain a copy of $\ell _{\infty }$ or $c_{0}$?.Proc. Amer. Math. Soc. 109 (1990), 747–752. MR 1012927, 10.1090/S0002-9939-1990-1012927-4
Reference: [Em] G. Emmanuele: On complemented copies of $c_{0}$ in spaces of compact operators.Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 32 (1992), 29–32. MR 1202755
Reference: [Em2] G. Emmanuele: On complemented copies of $c_{0}$ in spaces of compact operators, II.Commentat. Math. Univ. Carol. 35 (1994), 259–261. MR 1286572
Reference: [Fe1] J. C. Ferrando: When does $bvca\left( \Sigma ,X\right) $ contain a copy of $\ell _{\infty }$?.Math. Scand. 74 (1994), 271–274. MR 1298368
Reference: [Fe2] J. C. Ferrando: Copies of $c_{0}$ in certain vector-valued function Banach spaces.Math. Scand. 77 (1995), 148–152. MR 1365911, 10.7146/math.scand.a-12555
Reference: [Ka] N. J. Kalton: Spaces of compact operators.Math. Ann. 208 (1974), 267–278. Zbl 0266.47038, MR 0341154, 10.1007/BF01432152
Reference: [Ro] H. P. Rosenthal: On relatively disjoint families of measures, with some applications to Banach space theory.Studia Math. 37 (1979), 13–36. MR 0270122, 10.4064/sm-37-1-13-36
.

Files

Files Size Format View
CzechMathJ_50-2000-3_17.pdf 322.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo