Article
Keywords:
Banach space basic sequence copy of $c_{0}$ copy of $\ell _{\infty }$; basic sequence; copy of $c_{0}$; copy of $\ell _{\infty }$
Summary:
In this note we study some properties concerning certain copies of the classic Banach space $c_{0}$ in the Banach space $\mathcal{L}\left( X,Y\right) $ of all bounded linear operators between a normed space $X$ and a Banach space $Y$ equipped with the norm of the uniform convergence of operators.
References:
[BDL] J. Bonet, P. Domaǹski, Å. Lindström:
Cotype and complemented copies of $c_{0}$ in spaces of operators. Czechoslovak Math. J. 46 (1996), 271–289.
MR 1388616
[Di] J. Diestel:
Sequences and Series in Banach Spaces. Springer-Verlag, New York Berlin Heidelberg Tokyo, 1984.
MR 0737004
[Em] G. Emmanuele:
On complemented copies of $c_{0}$ in spaces of compact operators. Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 32 (1992), 29–32.
MR 1202755
[Em2] G. Emmanuele:
On complemented copies of $c_{0}$ in spaces of compact operators, II. Commentat. Math. Univ. Carol. 35 (1994), 259–261.
MR 1286572
[Fe1] J. C. Ferrando:
When does $bvca\left( \Sigma ,X\right) $ contain a copy of $\ell _{\infty }$?. Math. Scand. 74 (1994), 271–274.
MR 1298368
[Ro] H. P. Rosenthal:
On relatively disjoint families of measures, with some applications to Banach space theory. Studia Math. 37 (1979), 13–36.
DOI 10.4064/sm-37-1-13-36 |
MR 0270122